This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363147 #16 Aug 11 2025 08:53:43 %S A363147 193,233,241,257,277,281,313,337,349,353,373,389,397,401,409,421,433, %T A363147 449,457,461,509,521,541,557,569,577,593,601,613,617,641,653,661,673, %U A363147 677,701,709,733,757,761,769,773,797,809,821,829,853,857,877,881,929,937 %N A363147 Primes q == 1 (mod 4) such that there is at least one equivalence class of quaternary quadratic forms of discriminant q not representing 2. %H A363147 Andy Huchala, <a href="/A363147/b363147.txt">Table of n, a(n) for n = 1..20000</a> %H A363147 F. Hirzebruch, <a href="http://www.numdam.org/item/10.24033/asens.1342.pdf">Modulflächen und Modulkurven zur symmetrischen Hilbertschen Modulgruppe</a>, Annales scientifiques de l’É.N.S. 4e série, tome 11, no 1 (1978), p. 101-165. See page 135. %H A363147 Jürg Kramer, <a href="https://gdz.sub.uni-goettingen.de/id/PPN235181684_0281">On the linear independence of certain theta-series</a>, Mathematische Annalen 281.2 (1988): 219-228. See page 226. %o A363147 (Sage) %o A363147 bound = 100 %o A363147 P = Primes() %o A363147 p = 2 %o A363147 for i in range(bound): %o A363147 p = P.next(p) %o A363147 if p % 4 == 1: %o A363147 K1.<a> = NumberField(x^2 - p) %o A363147 K2.<b> = NumberField(x^2 + p) %o A363147 K3.<c> = NumberField(x^2 + 3*p) %o A363147 zeta = K1.zeta_function() %o A363147 h2 = len(K2.class_group()) %o A363147 h3 = len(K3.class_group()) %o A363147 H_plus = int(abs(.49+1/2*zeta(-1)+1/8 * h2 + 1/6*h3)) %o A363147 H = (H_plus+int((p + 19)/24))/2 %o A363147 if H_plus-H>0: %o A363147 print(p) %Y A363147 Cf. A307250, A363148. %K A363147 nonn %O A363147 1,1 %A A363147 _Andy Huchala_, May 18 2023