This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363148 #27 Aug 11 2025 08:16:26 %S A363148 1,1,2,1,1,2,3,4,1,2,2,1,1,4,6,2,6,5,7,1,1,7,4,2,9,10,7,13,5,8,11,3,5, %T A363148 15,3,5,7,6,8,14,20,3,4,17,6,9,8,15,10,19,20,26,7,20,20,12,34,7,13,32, %U A363148 26,10,16,16,23,11,17,41,37,11,28,46,20,28,14,17 %N A363148 a(n) gives the number of equivalence classes of quaternary quadratic forms of discriminant A363147(n) not representing 2. %C A363148 Conjecture: a(n) ~ c * A363147(n) ^ d where d is a constant which is roughly 1.51 and c is one of four constants, depending on the value of A363147(n) mod 24. See plots in files. %H A363148 Andy Huchala, <a href="/A363148/b363148.txt">Table of n, a(n) for n = 1..20000</a> %H A363148 Andy Huchala, <a href="/A363148/a363148.pdf">Growth of A363147(n) vs a(n)</a> %H A363148 F. Hirzebruch, <a href="http://www.numdam.org/item/10.24033/asens.1342.pdf">Modulflächen und Modulkurven zur symmetrischen Hilbertschen Modulgruppe</a>, Annales scientifiques de l’É.N.S. 4e série, tome 11, no 1 (1978), p. 101-165. See page 135. %H A363148 Jürg Kramer, <a href="https://gdz.sub.uni-goettingen.de/id/PPN235181684_0281">On the linear independence of certain theta-series</a>, Mathematische Annalen 281.2 (1988): 219-228. See page 226. %e A363148 a(5) = 1 as there is only one equivalence class of quaternary quadratic form of discriminant A363147(5) = 277 not representing 2 (see A307250). %o A363148 (Sage) %o A363148 bound = 100 %o A363148 P = Primes() %o A363148 p = 2 %o A363148 for i in range(bound): %o A363148 p = P.next(p) %o A363148 if p % 4 == 1: %o A363148 K1.<a> = NumberField(x^2 - p) %o A363148 K2.<b> = NumberField(x^2 + p) %o A363148 K3.<c> = NumberField(x^2 + 3*p) %o A363148 zeta = K1.zeta_function() %o A363148 h2 = len(K2.class_group()) %o A363148 h3 = len(K3.class_group()) %o A363148 H_plus = int(abs(.49+1/2*zeta(-1)+1/8 * h2 + 1/6*h3)) %o A363148 H = (H_plus+int((p + 19)/24))/2 %o A363148 if H_plus-H>0: %o A363148 print(H_plus-H) %Y A363148 Cf. A307250, A363147. %K A363148 nonn %O A363148 1,3 %A A363148 _Andy Huchala_, May 17 2023