cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363148 a(n) gives the number of equivalence classes of quaternary quadratic forms of discriminant A363147(n) not representing 2.

This page as a plain text file.
%I A363148 #27 Aug 11 2025 08:16:26
%S A363148 1,1,2,1,1,2,3,4,1,2,2,1,1,4,6,2,6,5,7,1,1,7,4,2,9,10,7,13,5,8,11,3,5,
%T A363148 15,3,5,7,6,8,14,20,3,4,17,6,9,8,15,10,19,20,26,7,20,20,12,34,7,13,32,
%U A363148 26,10,16,16,23,11,17,41,37,11,28,46,20,28,14,17
%N A363148 a(n) gives the number of equivalence classes of quaternary quadratic forms of discriminant A363147(n) not representing 2.
%C A363148 Conjecture: a(n) ~ c * A363147(n) ^ d where d is a constant which is roughly 1.51 and c is one of four constants, depending on the value of A363147(n) mod 24. See plots in files.
%H A363148 Andy Huchala, <a href="/A363148/b363148.txt">Table of n, a(n) for n = 1..20000</a>
%H A363148 Andy Huchala, <a href="/A363148/a363148.pdf">Growth of A363147(n) vs a(n)</a>
%H A363148 F. Hirzebruch, <a href="http://www.numdam.org/item/10.24033/asens.1342.pdf">Modulflächen und Modulkurven zur symmetrischen Hilbertschen Modulgruppe</a>, Annales scientifiques de l’É.N.S. 4e série, tome 11, no 1 (1978), p. 101-165. See page 135.
%H A363148 Jürg Kramer, <a href="https://gdz.sub.uni-goettingen.de/id/PPN235181684_0281">On the linear independence of certain theta-series</a>, Mathematische Annalen 281.2 (1988): 219-228. See page 226.
%e A363148 a(5) = 1 as there is only one equivalence class of quaternary quadratic form of discriminant A363147(5) = 277 not representing 2 (see A307250).
%o A363148 (Sage)
%o A363148 bound = 100
%o A363148 P = Primes()
%o A363148 p = 2
%o A363148 for i in range(bound):
%o A363148     p = P.next(p)
%o A363148     if p % 4 == 1:
%o A363148         K1.<a> = NumberField(x^2 - p)
%o A363148         K2.<b> = NumberField(x^2 + p)
%o A363148         K3.<c> = NumberField(x^2 + 3*p)
%o A363148         zeta = K1.zeta_function()
%o A363148         h2 = len(K2.class_group())
%o A363148         h3 = len(K3.class_group())
%o A363148         H_plus = int(abs(.49+1/2*zeta(-1)+1/8 * h2 + 1/6*h3))
%o A363148         H = (H_plus+int((p + 19)/24))/2
%o A363148         if H_plus-H>0:
%o A363148             print(H_plus-H)
%Y A363148 Cf. A307250, A363147.
%K A363148 nonn
%O A363148 1,3
%A A363148 _Andy Huchala_, May 17 2023