A363160 Smallest positive integer m with all digits distinct such that m^n contains each digit of m exactly n times, or -1 if no such m exists.
1, 406512, 516473892, 5702631489, 961527834, 7025869314, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
Offset: 1
Examples
a(1) = 1, because 1^1 = 1 has each digit of 1, 1 time, and no lesser number > 0 satisfies this. a(2) = 406512, because 406512 has distinct digits, 406512^2 = 165252006144 has each digit of 406512, 2 times, and no lesser number satisfies this. n a(n) a(n)^n 1 1 1 2 406512 165252006144 3 516473892 137766973511455269432948288 4 5702631489 1057550783692741389295697108242363408641 5 961527834 821881685441327565743977956591832631269739424 6 7025869314 120281934463386157260042215510596389732740014997586987548736
Crossrefs
Programs
-
Mathematica
hasDistinctDigitsQ[m_Integer?NonNegative]:=Length@IntegerDigits@m==Length@DeleteDuplicates@IntegerDigits@m;validNumberQ[n_Integer?NonNegative,m_Integer?NonNegative]:=AllTrue[Tally@IntegerDigits@m,Function[{digitFreq},MemberQ[Tally@IntegerDigits[m^n],{digitFreq[[1]],n*digitFreq[[2]]}]]];a[n_Integer?Positive,ex_Integer?Positive]:=Module[{m=1},Monitor[While[True,If[hasDistinctDigitsQ[m]&&validNumberQ[n,m],Return[m]];m++;If[m>10^(ex*n),Return[-1]];];m,m]];Table[a[n,7],{n,1,7}] (* Robert P. P. McKone, Sep 09 2023 *)
Comments