cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363164 Square array A(n, k), n, k >= 0, read by antidiagonals; A(n, k) is the greatest nonnegative number whose binary digits appear in order but not necessarily as consecutive digits in the binary expansions of n and k.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 3, 2, 1, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 1, 2, 3, 4, 3, 2, 1, 0, 0, 1, 1, 3, 2, 2, 3, 1, 1, 0, 0, 1, 2, 3, 2, 5, 2, 3, 2, 1, 0, 0, 1, 2, 1, 1, 3, 3, 1, 1, 2, 1, 0, 0, 1, 2, 3, 4, 3, 6, 3, 4, 3, 2, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Jul 07 2023

Keywords

Examples

			Table A(n, k) begins:
  n\k | 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
  ----+-----------------------------------------------------
    0 | 0  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0
    1 | 0  1  1  1  1  1  1  1  1  1   1   1   1   1   1   1
    2 | 0  1  2  1  2  2  2  1  2  2   2   2   2   2   2   1
    3 | 0  1  1  3  1  3  3  3  1  3   3   3   3   3   3   3
    4 | 0  1  2  1  4  2  2  1  4  4   4   2   4   2   2   1
    5 | 0  1  2  3  2  5  3  3  2  5   5   5   3   5   3   3
    6 | 0  1  2  3  2  3  6  3  2  3   6   3   6   6   6   3
    7 | 0  1  1  3  1  3  3  7  1  3   3   7   3   7   7   7
    8 | 0  1  2  1  4  2  2  1  8  4   4   2   4   2   2   1
    9 | 0  1  2  3  4  5  3  3  4  9   5   5   4   5   3   3
   10 | 0  1  2  3  4  5  6  3  4  5  10   5   6   6   6   3
   11 | 0  1  2  3  2  5  3  7  2  5   5  11   3   7   7   7
   12 | 0  1  2  3  4  3  6  3  4  4   6   3  12   6   6   3
   13 | 0  1  2  3  2  5  6  7  2  5   6   7   6  13   7   7
   14 | 0  1  2  3  2  3  6  7  2  3   6   7   6   7  14   7
   15 | 0  1  1  3  1  3  3  7  1  3   3   7   3   7   7  15
		

Crossrefs

See A175466 for a similar sequence.
Cf. A301983.

Programs

  • PARI
    A(n, k) = { my (sn = [0], bn = binary(n), sk = [0], bk = binary(k)); for (i = 1, #bn, sn = setunion(sn, [2*v+bn[i]|v<-sn])); for (i = 1, #bk, sk = setunion(sk, [2*v+bk[i]|v<-sk])); vecmax(setintersect(sn, sk)); }

Formula

A(n, k) = A(k, n).
A(n, 0) = 0.
A(n, 1) = 1 for any n > 0.
A(n, n) = n.