This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363173 #29 Jun 27 2023 10:28:09 %S A363173 0,0,0,0,7,16,84,180,462,796,1716,2856,5005,7744,12376,17508,27132, %T A363173 38160,54264,73788,100947,132216,177100,228748,296010,374808,475020, %U A363173 584140,736281,903168,1107568,1341232,1623160,1939308,2324784,2755380,3262623,3832080,4496388 %N A363173 Number of triangles inside a regular n-gon formed by intersecting line segments, considering all configurations of 3 line segments from 6 distinct vertices. %H A363173 Paolo Xausa, <a href="/A363173/b363173.txt">Table of n, a(n) for n = 3..10000</a> %H A363173 Bjorn Poonen and Michael Rubinstein, <a href="https://arxiv.org/abs/math/9508209">The number of intersection points made by the diagonals of a regular polygon</a>, arXiv:math/9508209 [math.MG], 1995-2006. %H A363173 Steven E. Sommars and Tim Sommars, <a href="https://cs.uwaterloo.ca/journals/JIS/sommars/newtriangle.html">The Number of Triangles Formed by Intersecting Diagonals of a Regular Polygon</a>, Journal of Integer Sequences, Vol. 1 (1998), Article 98.1.5. %H A363173 Paolo Xausa, <a href="/A363173/a363173.pdf">Illustration of a(9)</a>. %H A363173 <a href="/index/Pol#Poonen">Sequences formed by drawing all diagonals in regular polygon</a> %F A363173 a(n) = binomial(n,6) = A000579(n) if n is odd, A000579(n) - A260417(n/2) if n is even. %t A363173 A363173list[nmax_]:=Module[{d},d[m_,n_]:=Boole[Divisible[n,m]];Table[Binomial[n, 6]-If[EvenQ[n],((1/8n^2-9/8n+7/4)d[2,n]+3/4d[4,n]+(6n-106/3)d[6,n]-33d[12,n]-36d[18,n]-24d[24,n]+96d[30,n]+72d[42,n]+264d[60,n]+96d[84,n]+48d[90,n]+96d[120,n]+48d[210,n])n,0],{n,3,nmax}]];A363173list[50] %Y A363173 Column k = 6 of A363174. %Y A363173 Cf. A000579, A006561, A260417. %K A363173 nonn %O A363173 3,5 %A A363173 _Paolo Xausa_, May 19 2023