A363174 Array read by rows: T(n,k) is the number of triangles inside a regular n-gon formed by intersecting line segments, considering all configurations of 3 line segments from k distinct vertices, with n >= 3, 3 <= k <= 6.
1, 0, 0, 0, 4, 4, 0, 0, 10, 20, 5, 0, 20, 60, 30, 0, 35, 140, 105, 7, 56, 280, 280, 16, 84, 504, 630, 84, 120, 840, 1260, 180, 165, 1320, 2310, 462, 220, 1980, 3960, 796, 286, 2860, 6435, 1716, 364, 4004, 10010, 2856, 455, 5460, 15015, 5005, 560, 7280, 21840, 7744
Offset: 3
Examples
Array begins: n\k| 3 4 5 6 ---+--------------------------- 3 | 1, 0, 0, 0; 4 | 4, 4, 0, 0; 5 | 10, 20, 5, 0; 6 | 20, 60, 30, 0; 7 | 35, 140, 105, 7; 8 | 56, 280, 280, 16; 9 | 84, 504, 630, 84; 10 | 120, 840, 1260, 180; ...
Links
- Paolo Xausa, Table of n, a(n) for n = 3..10002 (rows 3..2502 of array, flattened).
- Bjorn Poonen and Michael Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG], 1995-2006.
- Steven E. Sommars and Tim Sommars, The Number of Triangles Formed by Intersecting Diagonals of a Regular Polygon, Journal of Integer Sequences, Vol. 1 (1998), Article 98.1.5.
- Paolo Xausa, Illustration of T(9,6).
- Sequences formed by drawing all diagonals in regular polygon
Crossrefs
Programs
-
Mathematica
A363174list[rowmax_]:=Module[{d},d[m_,n_]:=Boole[Divisible[n,m]];Table[Binomial[n,k]If[4<=k<=5,k,1]-If[k==6&&EvenQ[n],((1/8n^2-9/8n+7/4)d[2,n]+3/4d[4,n]+(6n-106/3)d[6,n]-33d[12,n]-36d[18,n]-24d[24,n]+96d[30,n]+72d[42,n]+264d[60,n]+96d[84,n]+48d[90,n]+96d[120,n]+48d[210,n])n,0],{n,3,rowmax},{k,3,6}]];A363174list[20]
Comments