cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363187 Prime numbers that are the average of three consecutive odd semiprimes.

This page as a plain text file.
%I A363187 #25 Jul 11 2023 11:28:00
%S A363187 31,41,59,83,107,139,163,191,197,281,311,383,397,443,521,673,677,757,
%T A363187 821,887,997,1061,1109,1151,1171,1229,1237,1373,1423,1453,1619,1823,
%U A363187 1889,1931,2053,2141,2203,2221,2309,2339,2437,2473,2477,2749,2801,2837,2953,3019,3119,3163,3209,3257,3347
%N A363187 Prime numbers that are the average of three consecutive odd semiprimes.
%H A363187 Gabriel Whigham, <a href="/A363187/b363187.txt">Table of n, a(n) for n = 1..10000</a>
%e A363187 31 is a term because (25 + 33 + 35)/3 = 31 is prime.
%e A363187 41 is a term because (35 + 39 + 49)/3 = 41 is prime.
%p A363187 OP:= select(isprime, [seq(i, i=3..10000, 2)]):
%p A363187 OSP:= sort(select(`<=`, [seq(seq(OP[i]*OP[j], j=1..i), i=1..nops(OP))], 3*OP[-1])):
%p A363187 SA:= [seq(add(OSP[i+j], j=0..2)/3, i=1..nops(OSP)-2)]:
%p A363187 select(t -> t::integer and isprime(t), SA); # _Robert Israel_, May 22 2023
%t A363187 Select[Plus @@@ Partition[Select[Range[1, 3400, 2], PrimeOmega[#] == 2 &], 3, 1] / 3, PrimeQ] (* _Amiram Eldar_, May 21 2023 *)
%o A363187 (Python)
%o A363187 from itertools import count, islice
%o A363187 from sympy import factorint, isprime
%o A363187 def semiprime(n): return sum(e for e in factorint(n).values()) == 2
%o A363187 def nextoddsemiprime(n): return next(k for k in count(n+1+(n&1), 2) if semiprime(k))
%o A363187 def agen(): # generator of terms
%o A363187     osp = [9, 15, 21]
%o A363187     while True:
%o A363187         q, r = divmod(sum(osp), len(osp))
%o A363187         if r == 0 and isprime(q):
%o A363187             yield q
%o A363187         osp = osp[1:] + [nextoddsemiprime(osp[-1])]
%o A363187 print(list(islice(agen(), 53))) # _Michael S. Branicky_, May 21 2023
%Y A363187 Cf. A000040, A046315.
%Y A363187 Cf. A363074, A363188.
%K A363187 nonn
%O A363187 1,1
%A A363187 _Elmo R. Oliveira_, May 20 2023