A363188 Prime numbers that are the exact average of four consecutive odd semiprimes.
53, 67, 89, 199, 223, 277, 349, 439, 449, 461, 487, 491, 499, 523, 557, 569, 643, 683, 877, 883, 929, 941, 1069, 1153, 1259, 1361, 1471, 1487, 1733, 1787, 1901, 1933, 1951, 2111, 2129, 2251, 2297, 2311, 2371, 2521, 2557, 2689, 2777, 2797, 2861, 2917, 2939, 3037, 3041, 3253, 3259, 3271, 3407
Offset: 1
Keywords
Examples
53 is a term because (49 + 51 + 55 + 57)/4 = 53 is prime. 67 is a term because (57 + 65 + 69 + 77)/4 = 67 is prime.
Programs
-
Maple
OP:= select(isprime,[seq(i,i=3..10000,2)]): OSP:= sort(select(`<=`,[seq(seq(OP[i]*OP[j],j=1..i),i=1..nops(OP))],3*OP[-1])): SA:= [seq(add(OSP[i+j],j=0..3)/4,i=1..nops(OSP)-3)]: select(t -> t::integer and isprime(t), SA); # Robert Israel, May 21 2023
-
Mathematica
Select[Plus @@@ Partition[Select[Range[1, 3500, 2], PrimeOmega[#] == 2 &], 4, 1] / 4, PrimeQ] (* Amiram Eldar, May 21 2023 *)
-
Python
from itertools import count, islice from sympy import factorint, isprime def semiprime(n): return sum(e for e in factorint(n).values()) == 2 def nextoddsemiprime(n): return next(k for k in count(n+1+(n&1), 2) if semiprime(k)) def agen(): # generator of terms osp = [9, 15, 21, 25] while True: q, r = divmod(sum(osp), len(osp)) if r == 0 and isprime(q): yield q osp = osp[1:] + [nextoddsemiprime(osp[-1])] print(list(islice(agen(), 53))) # Michael S. Branicky, May 21 2023