This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363197 #27 Jul 08 2023 16:46:28 %S A363197 1,1,10,343200,73082837755699200000, %T A363197 79548797573848497198355214730517854838277265162240000000000 %N A363197 a(n) is the number of ways the labels 1 to 2^n-1 can be assigned to a perfect binary tree with n levels such that there is an ordering between children and parents and also an ordering between the left and the right child. %C A363197 We choose one order relation like left > right, parent < child and keep this relation the same while counting all variants which will fit this relation. %C A363197 Number of permutations {1,2,...,2^n-1} which generate a binary search tree with minimum possible height such that each parent receives the left child first. %F A363197 a(n) = binomial(2^n - 2, 2^(n-1) - 1)*2^((4 - 5*n + n^2)/2)*a(n-1)^2. %F A363197 a(n) = A076615(2^n - 1) / 2^(n*(n - 1)/2). %e A363197 The 10 variants for a(3) are: %e A363197 1 1 1 %e A363197 / \ / \ / \ %e A363197 5 2 4 2 4 2 %e A363197 / \ / \ / \ / \ / \ / \ %e A363197 7 6 4 3 7 5 6 3 7 6 5 3 %e A363197 . %e A363197 1 1 1 %e A363197 / \ / \ / \ %e A363197 4 2 3 2 3 2 %e A363197 / \ / \ / \ / \ / \ / \ %e A363197 6 5 7 3 5 4 7 6 7 4 6 5 %e A363197 . %e A363197 1 1 1 %e A363197 / \ / \ / \ %e A363197 3 2 3 2 3 2 %e A363197 / \ / \ / \ / \ / \ / \ %e A363197 7 5 6 4 7 6 5 4 6 4 7 5 %e A363197 . %e A363197 1 %e A363197 / \ %e A363197 3 2 %e A363197 / \ / \ %e A363197 6 5 7 4 %e A363197 . %t A363197 RecurrenceTable[{a[n + 1] == Binomial[2^(n + 1) - 2, 2^n - 1]*2^((n^2 - 3*n)/2)*a[n]^2, a[1] == 1}, a, {n, 1, 6}] (* _Amiram Eldar_, May 21 2023 *) %o A363197 (PARI) a(n) = if(n==0,1,binomial(2^n-2, 2^(n-1)-1)*2^((4 - 5*n + n^2)/2)*a(n-1)^2) %Y A363197 Cf. A056972, A076615. %K A363197 nonn %O A363197 1,3 %A A363197 _Thomas Scheuerle_, May 21 2023