cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363200 Number of connected animals formed from n 6-gon connected truncated octahedra, avoiding connected squares.

This page as a plain text file.
%I A363200 #24 Dec 09 2023 04:59:23
%S A363200 1,1,2,5,15,55,248,1256,6844,38930,226961,1345641,8072770,48882245,
%T A363200 298237393
%N A363200 Number of connected animals formed from n 6-gon connected truncated octahedra, avoiding connected squares.
%C A363200 Rotations and reflections are identified.
%C A363200 Avoiding connected squares is the same as avoiding neighbors at [0,0,+-2], [0,+-2,0], and [+-2,0,0].
%C A363200 Allowing connected squares gives A038171.
%e A363200 The animals for n <= 5 are:
%e A363200 n=1:
%e A363200   0,0,0
%e A363200 n=2:
%e A363200   0,0,0; 1,1,1
%e A363200 n=3:
%e A363200   0,0,0; 0,2,2; 1,1,1
%e A363200   0,0,0; 1,1,1; 2,2,2
%e A363200 n=4:
%e A363200   0,0,0; 0,2,2; 1,1,1; 1,3,3
%e A363200   0,0,0; 0,2,2; 1,1,1; 2,0,2
%e A363200   0,0,0; 1,1,1; 1,3,3; 2,2,2
%e A363200   0,0,0; 1,1,1; 2,2,2; 3,3,3
%e A363200   0,0,1; 1,1,0; 1,3,2; 2,2,1
%e A363200 n=5:
%e A363200   0,0,0; 0,2,2; 0,4,4; 1,1,1; 1,3,3
%e A363200   0,0,0; 0,2,2; 1,1,1; 1,3,3; 2,0,2
%e A363200   0,0,0; 0,2,2; 1,1,1; 1,3,3; 2,2,4
%e A363200   0,0,0; 0,2,2; 1,1,1; 1,3,3; 2,4,4
%e A363200   0,0,0; 0,2,2; 1,1,1; 2,0,2; 2,2,0
%e A363200   0,0,0; 0,2,4; 1,1,1; 1,3,3; 2,2,2
%e A363200   0,0,0; 0,4,4; 1,1,1; 1,3,3; 2,2,2
%e A363200   0,0,0; 1,1,1; 1,3,3; 2,2,2; 3,1,3
%e A363200   0,0,0; 1,1,1; 2,2,2; 2,4,4; 3,3,3
%e A363200   0,0,0; 1,1,1; 2,2,2; 3,3,3; 4,4,4
%e A363200   0,0,1; 0,2,3; 1,1,0; 1,3,2; 2,2,1
%e A363200   0,0,1; 0,2,3; 1,1,2; 1,3,0; 2,2,1
%e A363200   0,0,1; 0,4,1; 1,1,0; 1,3,2; 2,2,1
%e A363200   0,0,1; 1,1,0; 2,2,1; 2,4,3; 3,3,2
%e A363200   0,0,1; 1,1,0; 2,2,1; 3,3,2; 4,4,1
%K A363200 nonn,hard,more
%O A363200 1,3
%A A363200 _Joerg Arndt_ and _Márk Péter Légrádi_, May 22 2023
%E A363200 a(14) and a(15) from _Joerg Arndt_, Dec 09 2023