cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A363203 Number of free linear polycubes of size n, identifying rotations and reflections and avoiding neighbors at [0,0,+-2], [0,+-2,0], and [+-2,0,0].

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 51, 128, 338, 882, 2350, 6238, 16693, 44561, 119339, 319104, 854420, 2285357
Offset: 1

Views

Author

Keywords

Comments

Linear polycubes have two end points with one neighbor, the remaining cubes all have two neighbors.
When a cube [x,y,z] is in the polycube then neither of the six cubes [x+-2,y,z], [x,y+-2,z], [x,y,z+-2] can be in the polycube. For example, no three cubes can be in a row.

Crossrefs

Cf. A363204 (linear and avoiding at [+-1,+-1,+-1]).

A368029 Number of free midpoint-free polycubes of size n, identifying rotations and reflections.

Original entry on oeis.org

1, 1, 1, 4, 5, 18, 33, 70, 110, 246, 526, 1144, 2366, 4689, 8597, 15168, 26367, 46696, 82428, 142991, 240609, 393640, 627305, 975760, 1474671, 2164515, 3084956, 4282222, 5810980, 7776373, 10351373, 13815334, 18556147, 25107905
Offset: 1

Views

Author

Joerg Arndt , Dec 08 2023

Keywords

Comments

Midpoint-free means that no three cubes are in positions (x,y,z), (x+dx,y+dx,z+dz), and (x+2*dx,y+2*dx,z+2*dz).

Examples

			The polycubes for n <= 5 are:
n=1:
  0,0,0
n=2:
  0,0,0; 0,0,1
n=3:
  0,0,0; 0,0,1; 0,1,0
n=4:
  0,0,0; 0,0,1; 0,1,0; 0,1,1
  0,0,0; 0,0,1; 0,1,0; 1,0,0
  0,0,0; 0,0,1; 0,1,0; 1,0,1
  0,0,0; 0,0,1; 0,1,1; 0,1,2
n=5:
  0,0,0; 0,0,1; 0,1,0; 0,1,1; 1,0,0
  0,0,0; 0,0,1; 0,1,0; 1,0,1; 1,0,2
  0,0,0; 0,0,1; 0,1,0; 1,0,1; 1,1,0
  0,0,0; 0,0,1; 0,1,1; 0,1,2; 1,0,1
  0,0,0; 0,0,1; 0,1,1; 1,1,1; 1,1,2
		

Crossrefs

Showing 1-2 of 2 results.