A363215 Integers p > 1 such that 3^d == 1 (mod p) where d = A000265(p-1).
2, 11, 13, 23, 47, 59, 71, 83, 107, 109, 121, 131, 167, 179, 181, 191, 227, 229, 239, 251, 263, 277, 286, 311, 313, 347, 359, 383, 419, 421, 431, 433, 443, 467, 479, 491, 503, 541, 563, 587, 599, 601, 647, 659, 683, 709, 719, 733, 743, 757, 827, 829, 839, 863
Offset: 1
Keywords
Links
- Jeppe Stig Nielsen, Table of n, a(n) for n = 1..10000
- Wikipedia, Strong pseudoprime
Programs
-
PARI
is(p)=my(d=p-1);d/=2^valuation(d,2);Mod(3,p)^d==1
-
Python
from itertools import count, islice def inA363215(n): return pow(3,n-1>>(~(n-1)&n-2).bit_length(),n)==1 def A363215_gen(startvalue=2): # generator of terms >= startvalue return filter(inA363215,count(max(startvalue,2))) A363215_list = list(islice(A363215_gen(),20)) # Chai Wah Wu, May 22 2023
Comments