This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363216 #17 May 28 2023 20:49:23 %S A363216 36,72,100,108,144,196,200,216,288,324,392,400,432,484,500,576,648, %T A363216 676,784,800,864,900,968,972,1000,1152,1156,1296,1352,1372,1444,1568, %U A363216 1600,1728,1764,1800,1936,1944,2000,2116,2304,2312,2500,2592,2700,2704,2744,2888,2916,3136,3200,3364,3456,3528,3600 %N A363216 Even powerful numbers that are not prime powers. %C A363216 This sequence is { A286708 INTERSECT A005843 } = { A001694 INTERSECT A363101 }. %C A363216 Subset of A001694, A126706, and A363101. %H A363216 Michael De Vlieger, <a href="/A363216/b363216.txt">Table of n, a(n) for n = 1..10000</a> %F A363216 This sequence is { k = a^2*b^3 : a >= 1, b >= 1, omega(k) > 1, k mod 2 = 0 }. %F A363216 Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/(3*zeta(6)) - 1/2 = A082695 / 3 - 1/2 = 0.147865... . - _Amiram Eldar_, May 28 2023 %e A363216 a(1) = 36 = 2^2 * 3^2, the smallest even number with multiple distinct prime factors, all of which have multiplicity exceeding 1, so it is the first term. %e A363216 a(2) = 72 = 2^3 * 3^2, %e A363216 a(3) = 100 = 2^2 * 5^2, etc. %t A363216 With[{nn = 3600}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], And[EvenQ[#], ! PrimePowerQ[#]] &] ] %o A363216 (PARI) isok(k) = !(k%2) && ispowerful(k) && !isprimepower(k); \\ _Michel Marcus_, May 27 2023 %Y A363216 Cf. A001694, A062739, A126706, A286708, A363101, A363217. %Y A363216 Cf. A002117, A013661, A013664, A082695. %K A363216 nonn %O A363216 1,1 %A A363216 _Michael De Vlieger_, May 21 2023