This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363220 #7 May 31 2023 10:48:53 %S A363220 1,0,1,1,1,3,3,8,8,12,12,15,21,27,36,49,65,85,112,149,176,214,257,311, %T A363220 378,470,572,710,877,1080,1322,1637,1983,2416,2899,3465,4107,4891, %U A363220 5763,6820,8071,9542,11289,13381,15808,18710,22122,26105,30737,36156,42377 %N A363220 Number of integer partitions of n whose conjugate has the same median. %C A363220 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %e A363220 The partition y = (4,3,1,1) has median 2, and its conjugate (4,2,2,1) also has median 2, so y is counted under a(9). %e A363220 The a(1) = 1 through a(9) = 8 partitions: %e A363220 (1) . (21) (22) (311) (321) (511) (332) (333) %e A363220 (411) (4111) (422) (711) %e A363220 (3111) (31111) (611) (4221) %e A363220 (3311) (4311) %e A363220 (4211) (6111) %e A363220 (5111) (51111) %e A363220 (41111) (411111) %e A363220 (311111) (3111111) %t A363220 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A363220 Table[Length[Select[IntegerPartitions[n],Median[#]==Median[conj[#]]&]],{n,30}] %Y A363220 For mean instead of median we have A047993. %Y A363220 For product instead of median we have A325039, ranks A325040. %Y A363220 For union instead of conjugate we have A360245, complement A360244. %Y A363220 Median of conjugate by rank is A363219. %Y A363220 These partitions are ranked by A363261. %Y A363220 A000700 counts self-conjugate partitions, ranks A088902. %Y A363220 A046682 and A352487-A352490 pertain to excedance set. %Y A363220 A122111 represents partition conjugation. %Y A363220 A325347 counts partitions with integer median. %Y A363220 A330644 counts non-self-conjugate partitions (twice A000701), ranks A352486. %Y A363220 A352491 gives n minus Heinz number of conjugate. %Y A363220 Cf. A000975, A067538, A114638, A360068, A360242, A360248, A362617, A362618, A362621, A363223, A363260. %K A363220 nonn %O A363220 1,6 %A A363220 _Gus Wiseman_, May 29 2023