This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363225 #18 Mar 23 2024 22:12:51 %S A363225 0,0,0,1,1,2,4,5,9,14,21,29,43,58,81,109,148,195,263,339,445,574,744, %T A363225 942,1209,1515,1923,2399,3005,3721,4629,5693,7024,8589,10530,12804, %U A363225 15596,18876,22870,27538,33204,39816,47766,57061,68161,81099,96510,114434,135634 %N A363225 Number of integer partitions of n containing three parts (a,b,c) (repeats allowed) such that a + b = c. A variation of sum-full partitions. %C A363225 Note that, by this definition, the partition (2,1) is sum-full, because (1,1,2) is a triple satisfying a + b = c. %e A363225 The a(3) = 1 through a(9) = 14 partitions: %e A363225 (21) (211) (221) (42) (421) (422) (63) %e A363225 (2111) (321) (2221) (431) (432) %e A363225 (2211) (3211) (521) (621) %e A363225 (21111) (22111) (3221) (3321) %e A363225 (211111) (4211) (4221) %e A363225 (22211) (4311) %e A363225 (32111) (5211) %e A363225 (221111) (22221) %e A363225 (2111111) (32211) %e A363225 (42111) %e A363225 (222111) %e A363225 (321111) %e A363225 (2211111) %e A363225 (21111111) %t A363225 Table[Length[Select[IntegerPartitions[n],Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]!={}&]],{n,0,15}] %o A363225 (Python) %o A363225 from collections import Counter %o A363225 from itertools import combinations_with_replacement %o A363225 from sympy.utilities.iterables import partitions %o A363225 def A363225(n): return sum(1 for p in partitions(n) if any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # _Chai Wah Wu_, Sep 21 2023 %Y A363225 For subsets of {1..n} we have A093971, A088809 without re-using parts. %Y A363225 The complement for subsets is A007865, A085489 without re-using parts. %Y A363225 Without re-using parts we have A237113, complement A236912. %Y A363225 For sums of any length > 1 (without re-usable parts) we have A237668, complement A237667. %Y A363225 The strict case is A363226. %Y A363225 The complement is counted by A364345, strict A364346. %Y A363225 These partitions have ranks A364348, complement A364347. %Y A363225 The strict linear combination-free version is A364350. %Y A363225 A000041 counts partitions, strict A000009. %Y A363225 A008284 counts partitions by length, strict A008289. %Y A363225 A323092 counts double-free partitions, ranks A320340. %Y A363225 Cf. A002865, A025065, A026905, A108917, A237984, A326083, A363260. %K A363225 nonn %O A363225 0,6 %A A363225 _Gus Wiseman_, Jul 19 2023 %E A363225 a(31)-a(48) from _Chai Wah Wu_, Sep 21 2023