This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363226 #18 Oct 18 2023 04:44:04 %S A363226 0,0,0,1,0,0,2,1,2,3,5,4,6,7,11,11,16,18,26,29,34,42,51,62,72,84,101, %T A363226 119,142,166,191,226,262,300,354,405,467,540,623,705,807,927,1060, %U A363226 1206,1369,1551,1760,1998,2248,2556,2861,3236,3628,4100,4587,5152,5756 %N A363226 Number of strict integer partitions of n containing some three possibly equal parts (a,b,c) such that a + b = c. A variation of sum-full strict partitions. %C A363226 Note that, by this definition, the partition (2,1) is sum-full, because (1,1,2) is a triple satisfying a + b = c. %e A363226 The a(3) = 1 through a(15) = 11 partitions (A=10, B=11, C=12): %e A363226 21 . . 42 421 431 63 532 542 84 643 653 A5 %e A363226 321 521 432 541 632 642 742 743 843 %e A363226 621 631 821 651 841 752 942 %e A363226 721 5321 921 A21 761 C21 %e A363226 4321 5421 5431 842 6432 %e A363226 6321 6421 B21 6531 %e A363226 7321 5432 7431 %e A363226 6431 7521 %e A363226 6521 8421 %e A363226 7421 9321 %e A363226 8321 54321 %t A363226 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]!={}&]],{n,0,30}] %o A363226 (Python) %o A363226 from itertools import combinations_with_replacement %o A363226 from collections import Counter %o A363226 from sympy.utilities.iterables import partitions %o A363226 def A363226(n): return sum(1 for p in partitions(n) if max(p.values(),default=0)==1 and any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # _Chai Wah Wu_, Sep 20 2023 %Y A363226 For subsets of {1..n} we have A093971 (sum-full sets), complement A007865. %Y A363226 The non-strict version is A363225, ranks A364348 (complement A364347). %Y A363226 The complement is counted by A364346, non-strict A364345. %Y A363226 A000041 counts partitions, strict A000009. %Y A363226 A008284 counts partitions by length, strict A008289. %Y A363226 A236912 counts sum-free partitions not re-using parts, complement A237113. %Y A363226 A323092 counts double-free partitions, ranks A320340. %Y A363226 Cf. A002865, A025065, A026905, A085489, A108917, A237667, A237668 A240861, A275972, A320347, A326083. %K A363226 nonn %O A363226 0,7 %A A363226 _Gus Wiseman_, Jul 19 2023 %E A363226 a(31)-a(56) from _Chai Wah Wu_, Sep 20 2023