This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363233 #22 May 23 2023 10:46:54 %S A363233 1,0,1,1,3,1,5,4,10,8,16,17,29,29,48,53,81,89,130,149,208,238,325,381, %T A363233 506,592,770,910,1165,1374,1738,2057,2571,3038,3761,4451,5461,6447, %U A363233 7855,9270,11219,13214,15899,18703,22386,26276,31306,36691,43525,50902,60149,70221,82679,96325 %N A363233 Number of partitions of n with rank a multiple of 4. %F A363233 G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * (1+x^(4*k)) / (1-x^(4*k)). %p A363233 b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n, %p A363233 `if`(irem(i-c, 4)=0, 1, 0), b(n-i, i, c+1)+b(n, i+1, c))) %p A363233 end: %p A363233 a:= n-> b(n, 1$2): %p A363233 seq(a(n), n=1..54); # _Alois P. Heinz_, May 23 2023 %o A363233 (PARI) my(N=60, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*(1+x^(4*k))/(1-x^(4*k)))) %Y A363233 Cf. A000041, A328988, A340601, A363237, A363238, A363239. %K A363233 nonn %O A363233 1,5 %A A363233 _Seiichi Manyama_, May 23 2023