cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363235 a(0) = 1; let e be the largest multiplicity such that p^e | a(n); for n>0, a(n) = Sum_{j=1..k} 2^(e(j)-1) where k is the index of the greatest power factor p(k)^e(k) such that p(k-1)^e(k-1) > p(k)^(e(k)+1).

This page as a plain text file.
%I A363235 #5 Jun 11 2023 12:29:23
%S A363235 0,1,2,3,4,5,8,9,10,11,16,17,18,19,20,21,22,23,32,33,34,35,36,37,38,
%T A363235 39,64,65,66,67,68,69,70,71,72,73,74,75,128,129,130,131,132,133,134,
%U A363235 135,136,137,138,139,144,145,146,147,148,149,150,151,256,257,258,259,260,261,262,263,264,265,266,267
%N A363235 a(0) = 1; let e be the largest multiplicity such that p^e | a(n); for n>0, a(n) = Sum_{j=1..k} 2^(e(j)-1) where k is the index of the greatest power factor p(k)^e(k) such that p(k-1)^e(k-1) > p(k)^(e(k)+1).
%C A363235 A binary compactification of A363250, this sequence rewrites A363250(n) = Product_{i=1..omega(a(n))} p(i)^e(i) instead as Sum_{i=1..omega(a(n))} e(i)-1.
%C A363235 Not a permutation of nonnegative integers.
%H A363235 Michael De Vlieger, <a href="/A363235/b363235.txt">Table of n, a(n) for n = 0..11210</a> (a(11210) = 2^28.)
%H A363235 Michael De Vlieger, <a href="/A363235/a363235.png">Binary tree</a> indicating natural numbers k in red that appear in this sequence for k = 1..16383.
%e A363235 a(1) = 1 since 2^1 is a product of the smallest primes p(i) whose prime power factors decrease as i increases; Hence a(1) = 2^(e(i)-1) = 1.
%e A363235 a(2) = 2 since we can find no power 3^e with e>=1 that is smaller than 2^1, we increment the exponent of 2 and have 2^2, hence a(2) = 2^(e(i)-1) = 2.
%e A363235 a(3) = 3 since indeed we may multiply 2^2 by 3^1; 2^2 > 3^1, hence Sum_{i=1..2} 2^(e(i)-1) = 2^1 + 2^0 = 2+1 = 3.
%e A363235 Table relating this sequence to A363250.
%e A363235 b(n) = A363250(n), f(n) = A067255(n), g(n) = A272011(n), with the latter two
%e A363235    n      b(n)  f(b(n))  a(n)  g(a(n))
%e A363235   ------------------------------------
%e A363235    1        1   0          0   -
%e A363235    2        2   1          1   0
%e A363235    3        4   2          2   1
%e A363235    4       12   2,1        3   1,0
%e A363235    5        8   3          4   2
%e A363235    6       24   3,1        5   2,0
%e A363235    7       16   4          8   3
%e A363235    8       48   4,1        9   3,0
%e A363235    9      144   4,2       10   3,1
%e A363235   10      720   4,2,1     11   3,1,0
%e A363235   11       32   5         16   4
%e A363235   12       96   5,1       17   4,0
%e A363235   13      288   5,2       18   4,1
%e A363235   14     1440   5,2,1     19   4,1,0
%e A363235   15      864   5,3       20   4,2
%e A363235   16     4320   5,3,1     21   4,2,0
%e A363235   17    21600   5,3,2     22   4,2,1
%e A363235   18   151200   5,3,2,1   23   4,2,1,0
%e A363235   19       64   6         32   5
%e A363235   ...
%e A363235 Therefore, a(18) = 23 = 2^4 + 2^2 + 2^1 + 2^0 since b(18) = 151200 = 2^5 * 3^3 * 5^2 * 7^1.
%e A363235 The sequence is a series of intervals, organized so as to begin with 2^k, that begin as follows:
%e A363235      0
%e A363235      1
%e A363235      2..3
%e A363235      4..5
%e A363235      8..11
%e A363235     16..23
%e A363235     32..39
%e A363235     64..75
%e A363235    128..139     144..151
%e A363235    256..267     272..279
%e A363235    512..523     528..535     544..559
%e A363235   1024..1035   1040..1047   1056..1071
%e A363235   2048..2059   2064..2071   2080..2095   2112..2127
%e A363235   ...
%t A363235 Select[Range[0, 300], AllTrue[Differences@ MapIndexed[Prime[First[#2]]^#1 &, Length[#] - Position[#, 1][[All, 1]] &@ IntegerDigits[#, 2] + 1], # < 0 &] &]
%Y A363235 Cf. A000079, A067255, A272011, A347284, A363063, A363250.
%K A363235 nonn
%O A363235 0,3
%A A363235 _Michael De Vlieger_, Jun 09 2023