This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363237 #10 May 23 2023 10:46:58 %S A363237 1,0,1,1,1,3,3,4,6,8,12,15,21,27,34,47,59,77,98,125,160,200,251,315, %T A363237 390,488,602,744,913,1120,1370,1669,2029,2462,2975,3597,4327,5203, %U A363237 6237,7466,8919,10634,12653,15035,17824,21114,24950,29455,34705,40844,47991,56317,65987,77231,90252 %N A363237 Number of partitions of n with rank a multiple of 5. %F A363237 G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * (1+x^(5*k)) / (1-x^(5*k)). %p A363237 b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n, %p A363237 `if`(irem(i-c, 5)=0, 1, 0), b(n-i, i, c+1)+b(n, i+1, c))) %p A363237 end: %p A363237 a:= n-> b(n, 1$2): %p A363237 seq(a(n), n=1..55); # _Alois P. Heinz_, May 23 2023 %o A363237 (PARI) my(N=60, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*(1+x^(5*k))/(1-x^(5*k)))) %Y A363237 Cf. A000041, A328988, A340601, A363233, A363238, A363239. %K A363237 nonn %O A363237 1,6 %A A363237 _Seiichi Manyama_, May 23 2023