This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363241 #23 Dec 20 2024 11:27:25 %S A363241 0,0,1,1,1,3,3,6,6,10,12,19,22,33,38,54,65,91,106,145,173,228,274,356, %T A363241 424,545,652,823,986,1232,1468,1822,2172,2665,3173,3869,4590,5568, %U A363241 6591,7938,9386,11249,13256,15821,18608,22100,25941,30695,35933,42373,49501,58160,67814,79434,92396,107932 %N A363241 Number of partitions of n with prime rank. %H A363241 Alois P. Heinz, <a href="/A363241/b363241.txt">Table of n, a(n) for n = 1..1000</a> %H A363241 Wikipedia, <a href="https://en.wikipedia.org/wiki/Rank_of_a_partition">Rank of a partition</a> %F A363241 G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * Sum_{p prime} x^(k*p). %F A363241 a(n) = Sum_{p prime} A063995(n,p). - _Alois P. Heinz_, Dec 20 2024 %e A363241 a(6) = 3 counts these partitions: 6, 5+1, 4+2. %p A363241 b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n, %p A363241 `if`(isprime(i-c), 1, 0), b(n-i, i, c+1)+b(n, i+1, c))) %p A363241 end: %p A363241 a:= n-> b(n, 1$2): %p A363241 seq(a(n), n=1..56); # _Alois P. Heinz_, May 23 2023 %t A363241 b[n_, i_, c_] := b[n, i, c] = If[i > n, 0, If[i == n, If[i-c > 0 && PrimeQ[i-c], 1, 0], b[n-i, i, c+1] + b[n, i+1, c]]]; %t A363241 a[n_] := b[n, 1, 1]; %t A363241 Table[a[n], {n, 1, 56}] (* _Jean-François Alcover_, Dec 20 2024, after _Alois P. Heinz_ *) %o A363241 (PARI) my(N=60, x='x+O('x^N)); concat([0, 0], Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*sum(j=1, N, isprime(j)*x^(k*j))))) %Y A363241 Cf. A000041, A010051, A037032, A063995. %K A363241 nonn,easy %O A363241 1,6 %A A363241 _Seiichi Manyama_, May 23 2023