A363242 Numbers whose primorial-base representation contains only odd digits.
1, 3, 9, 21, 39, 51, 99, 111, 159, 171, 249, 261, 309, 321, 369, 381, 669, 681, 729, 741, 789, 801, 1089, 1101, 1149, 1161, 1209, 1221, 1509, 1521, 1569, 1581, 1629, 1641, 1929, 1941, 1989, 2001, 2049, 2061, 2559, 2571, 2619, 2631, 2679, 2691, 2979, 2991, 3039
Offset: 1
Examples
3 is a term since its primorial-base presentation, 11, has only odd digits. 21 is a term since its primorial-base presentation, 311, has only odd digits.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..14620 (terms below A002110(8) = 19#)
- Index entries for sequences related to primorial base.
Crossrefs
Subsequence: A143293.
Similar sequences: A003462 \ {0} (ternary), A014261 (decimal), A032911 (base 4), A032912 (base 5), A033032 (base 6), A033033 (base 7), A033034 (base 8), A033035 (base 9), A033036 (base 11), A033037 (base 12), A033038 (base 13), A033039 (base 14), A033040 (base 15), A033041 (base 16), A126646 (binary), A351894 (factorial base).
Programs
-
Mathematica
With[{max = 5}, bases = Prime@ Range[max, 1, -1]; nmax = Times @@ bases - 1; prmBaseDigits[n_] := IntegerDigits[n, MixedRadix[bases]]; Select[Range[1, nmax, 2], AllTrue[prmBaseDigits[#], OddQ] &]]
-
PARI
is(n) = {my(p = 2); if(n < 1, return(0)); while(n > 0, if((n%p)%2 == 0, return(0)); n \= p; p = nextprime(p+1)); return(1);}
Comments