cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363245 Lexicographically first sequence of positive integers such that all terms are pairwise coprime and no subset sum is a power of 2.

This page as a plain text file.
%I A363245 #34 Jun 14 2023 18:41:49
%S A363245 3,7,10,11,17,31,41,71,169,199,263,337,367,1553,2129,2287,2297,4351,
%T A363245 10433,16391,16433,34829,65543,69557,165887,262151,358481,817153,
%U A363245 952319,1048583,3704737,3932167,4518071,12582919,17305417,17367019,50069497,50593799,87228517
%N A363245 Lexicographically first sequence of positive integers such that all terms are pairwise coprime and no subset sum is a power of 2.
%H A363245 Jon E. Schoenfield, <a href="/A363245/a363245.txt">Magma program</a> (computes first 36 terms).
%t A363245 a = {3}; k = 2; Monitor[Do[While[Or[! Apply[CoprimeQ, Join[a, {k}]], AnyTrue[Map[Log2 @* Total@ Append[#, k] &, Subsets[a]], IntegerQ]], k++]; AppendTo[a, k]; k++, {i, 16}], {i, k}]; a (* _Michael De Vlieger_, Jun 14 2023 *)
%o A363245 (Python)
%o A363245 from math import gcd
%o A363245 from itertools import count, islice
%o A363245 def agen(): # generator of terms
%o A363245     a, ss, pows2, m = [], set(), {1, 2}, 2
%o A363245     for k in count(1):
%o A363245         if k in pows2: continue
%o A363245         elif k > m: m <<= 1; pows2.add(m)
%o A363245         if any(p2-k in ss for p2 in pows2): continue
%o A363245         if any(gcd(ai, k) != 1 for ai in a): continue
%o A363245         a.append(k); yield k
%o A363245         ss |= {k} | {k+si for si in ss if k+si not in ss}
%o A363245         while m < max(ss): m <<= 1; pows2.add(m)
%o A363245 print(list(islice(agen(), 30))) # _Michael S. Branicky_, Jun 09 2023
%Y A363245 Cf. A353889.
%K A363245 nonn
%O A363245 1,1
%A A363245 _Julian Zbigniew Kuryllowicz-Kazmierczak_, May 23 2023
%E A363245 a(23)-a(33) from _Michael S. Branicky_, Jun 07 2023
%E A363245 a(34)-a(39) from _Jon E. Schoenfield_, Jun 09 2023