This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363245 #34 Jun 14 2023 18:41:49 %S A363245 3,7,10,11,17,31,41,71,169,199,263,337,367,1553,2129,2287,2297,4351, %T A363245 10433,16391,16433,34829,65543,69557,165887,262151,358481,817153, %U A363245 952319,1048583,3704737,3932167,4518071,12582919,17305417,17367019,50069497,50593799,87228517 %N A363245 Lexicographically first sequence of positive integers such that all terms are pairwise coprime and no subset sum is a power of 2. %H A363245 Jon E. Schoenfield, <a href="/A363245/a363245.txt">Magma program</a> (computes first 36 terms). %t A363245 a = {3}; k = 2; Monitor[Do[While[Or[! Apply[CoprimeQ, Join[a, {k}]], AnyTrue[Map[Log2 @* Total@ Append[#, k] &, Subsets[a]], IntegerQ]], k++]; AppendTo[a, k]; k++, {i, 16}], {i, k}]; a (* _Michael De Vlieger_, Jun 14 2023 *) %o A363245 (Python) %o A363245 from math import gcd %o A363245 from itertools import count, islice %o A363245 def agen(): # generator of terms %o A363245 a, ss, pows2, m = [], set(), {1, 2}, 2 %o A363245 for k in count(1): %o A363245 if k in pows2: continue %o A363245 elif k > m: m <<= 1; pows2.add(m) %o A363245 if any(p2-k in ss for p2 in pows2): continue %o A363245 if any(gcd(ai, k) != 1 for ai in a): continue %o A363245 a.append(k); yield k %o A363245 ss |= {k} | {k+si for si in ss if k+si not in ss} %o A363245 while m < max(ss): m <<= 1; pows2.add(m) %o A363245 print(list(islice(agen(), 30))) # _Michael S. Branicky_, Jun 09 2023 %Y A363245 Cf. A353889. %K A363245 nonn %O A363245 1,1 %A A363245 _Julian Zbigniew Kuryllowicz-Kazmierczak_, May 23 2023 %E A363245 a(23)-a(33) from _Michael S. Branicky_, Jun 07 2023 %E A363245 a(34)-a(39) from _Jon E. Schoenfield_, Jun 09 2023