cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363250 Numbers in A363063 arranged in lexicographic order according to ordered prime signature (i.e., multiplicities of prime power factors p^k, written in order of p).

This page as a plain text file.
%I A363250 #26 Jun 21 2025 00:44:52
%S A363250 1,2,4,12,8,24,16,48,144,720,32,96,288,1440,864,4320,21600,151200,64,
%T A363250 192,576,2880,1728,8640,43200,302400,128,384,1152,5760,3456,17280,
%U A363250 86400,604800,10368,51840,259200,1814400,256,768,2304,11520,6912,34560,172800,1209600,20736,103680,518400,3628800,62208
%N A363250 Numbers in A363063 arranged in lexicographic order according to ordered prime signature (i.e., multiplicities of prime power factors p^k, written in order of p).
%C A363250 The sequence is also readable as an irregular triangle by rows in which row n lists the terms divisible by 2^k but not by 2^(k+1).
%C A363250 Numbers m in A363063 are products of prime powers p(j)^S(j), j = 1..N, where p(j) is the j-th prime, such that p(j+1)^S(j+1) < p(j)^S(j). As consequence of definition of A363063, S(j) > S(j+1), hence multiplicities S(j) are distinct. Consequently, A363063 is a subset of A025487; m is a product of primorials. A025487 in turn is a subset of A055932.
%C A363250 These qualities enable us to write an algorithm that increments S(j) or drops the last term in S until we can increment S(j) to attain a solution. This algorithm generates terms in lexicographic order as described in the Name. The same qualities enable expression of m = Product p(j)^S(j) instead as Sum 2^(S(j)-1), a strictly increasing sequence.
%H A363250 Michael De Vlieger, <a href="/A363250/b363250.txt">Table of n, a(n) for n = 0..14158</a> (rows i = 0..30, flattened)
%H A363250 Michael De Vlieger, <a href="/A363250/a363250.png">Plot p^e | a(n) at (x,y) = (n,e)</a>, n = 1..3526, 12X vertical exaggeration
%F A363250 Seen as an irregular triangle, the first term in row i is 2^i, and the last term in row i is A347284(i).
%e A363250 Table of n, a(n), and multiplicities S(j) written such that Product p(j)^S(j) = a(n). a(n) = A000079(i) is shown in the penultimate column, while a(n) = A347284(k) appears in the last column.
%e A363250    n      a(n) multiplicities  i    k
%e A363250   -----------------------------------
%e A363250    0:       1                  0    0
%e A363250    1:       2           1      1    1
%e A363250    2:       4         2        2
%e A363250    3:      12         2 1           2
%e A363250    4:       8       3          3
%e A363250    5:      24       3   1           3
%e A363250    6:      16     4            4
%e A363250    7:      48     4     1
%e A363250    8:     144     4   2
%e A363250    9:     720     4   2 1           4
%e A363250   10:      32   5              5
%e A363250   11:      96   5       1
%e A363250   12:     288   5     2
%e A363250   13:    1440   5     2 1
%e A363250   14:     864   5   3
%e A363250   15:    4320   5   3   1
%e A363250   16:   21600   5   3 2
%e A363250   17:  151200   5   3 2 1           5
%e A363250   ...
%e A363250 Sequence read as an irregular triangle T(n, k):
%e A363250   n\k   1    2    3     4     5     6      7       8
%e A363250   ---------------------------------------------------
%e A363250   0:    1
%e A363250   1:    2
%e A363250   2:    4   12
%e A363250   3:    8   24
%e A363250   4:   16   48  144   720
%e A363250   5:   32   96  288  1440   864  4320  21600  151200
%e A363250   6:   64  192  576  2880  1728  8640  43200  302400
%e A363250   ...
%t A363250 nn = 12;
%t A363250  f[x_] := Times @@ MapIndexed[Prime[First[#2]]^#1 &, x];
%t A363250  {1}~Join~Reap[Do[s = {i}; Sow[2^i]; Set[k, 1];
%t A363250      Do[
%t A363250       If[Prime[k]^s[[-1]] > Prime[k + 1],
%t A363250        AppendTo[s, 1]; k++; Sow[f[s]],
%t A363250        If[Length[s] == 1, Break[],
%t A363250         If[Prime[k - 1]^(s[[-2]]) > Prime[k]^(s[[-1]] + 1),
%t A363250          s[[-1]]++; Sow[f[s]],
%t A363250          While[And[k > 1,
%t A363250            Prime[k - 1]^(s[[-2]]) < Prime[k]^(s[[-1]] + 1)], k--;
%t A363250           s = s[[1 ;; k]]]; If[k == 1, Break[], s[[-1]]++; Sow[f[s]] ]
%t A363250           ] ] ], {j, Infinity}], {i, nn}]][[-1, -1]]
%o A363250 (Python)
%o A363250 from sympy import nextprime,oo
%o A363250 from itertools import islice
%o A363250 primes = [2] # global list of first primes
%o A363250 def f(pi, ppmax):
%o A363250     # Generate numbers with nonincreasing prime-powers <= ppmax, starting at the (pi+1)-st prime.
%o A363250     if len(primes) <= pi: primes.append(nextprime(primes[-1]))
%o A363250     p0 = primes[pi]
%o A363250     if ppmax < p0:
%o A363250         yield 1
%o A363250         return
%o A363250     pp = 1
%o A363250     while pp <= ppmax:
%o A363250         for x in f(pi+1, pp):
%o A363250             yield pp*x
%o A363250         pp *= p0
%o A363250 def A363250_list(nterms):
%o A363250     return list(islice(f(0,oo),nterms)) # _Pontus von Brömssen_, May 25 2023
%Y A363250 Cf. A000079, A025487, A055932, A067255, A087980, A124010, A347284, A363063.
%Y A363250 Subsequence of A362227.
%K A363250 nonn,tabf
%O A363250 0,2
%A A363250 _Michael De Vlieger_, May 23 2023
%E A363250 Edited by _Michael De Vlieger_/_Peter Munn_, May 27 2025