This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363260 #11 Sep 26 2023 13:39:33 %S A363260 1,1,2,2,4,5,7,10,13,17,21,28,35,46,57,70,87,110,130,165,198,238,285, %T A363260 349,410,498,583,702,819,983,1136,1353,1570,1852,2137,2520,2898,3390, %U A363260 3891,4540,5191,6028,6889,7951,9082,10450,11884,13650,15508,17728,20113 %N A363260 Number of integer partitions of n with parts disjoint from first differences of parts, meaning no part is the difference of two consecutive parts. %e A363260 The a(1) = 1 through a(8) = 13 partitions: %e A363260 (1) (2) (3) (4) (5) (6) (7) (8) %e A363260 (11) (111) (22) (32) (33) (43) (44) %e A363260 (31) (41) (51) (52) (53) %e A363260 (1111) (311) (222) (61) (62) %e A363260 (11111) (411) (322) (71) %e A363260 (3111) (331) (332) %e A363260 (111111) (511) (611) %e A363260 (4111) (2222) %e A363260 (31111) (3311) %e A363260 (1111111) (5111) %e A363260 (41111) %e A363260 (311111) %e A363260 (11111111) %t A363260 Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]=={}&]],{n,0,30}] %o A363260 (Python) %o A363260 from collections import Counter %o A363260 from sympy.utilities.iterables import partitions %o A363260 def A363260(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # _Chai Wah Wu_, Sep 26 2023 %Y A363260 For length instead of differences we have A229816, strict A240861. %Y A363260 For all differences of pairs parts we have A364345. %Y A363260 For subsets of {1..n} instead of partitions we have A364463. %Y A363260 The strict case is A364464. %Y A363260 A000041 counts integer partitions, strict A000009. %Y A363260 A008284 counts partitions by length, strict A008289. %Y A363260 A323092 counts double-free partitions, ranks A320340. %Y A363260 A325325 counts partitions with distinct first-differences. %Y A363260 Cf. A002865, A025065, A108917, A236912, A237113, A237667, A320347, A326083, A363225, A364347. %K A363260 nonn %O A363260 0,3 %A A363260 _Gus Wiseman_, Jul 19 2023