cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363261 The partial sums of the prime indices of n include half the sum of all prime indices of n.

Original entry on oeis.org

4, 9, 12, 16, 25, 30, 40, 48, 49, 63, 64, 70, 81, 84, 108, 112, 121, 144, 154, 160, 165, 169, 192, 198, 220, 256, 264, 270, 273, 286, 289, 325, 351, 352, 360, 361, 364, 390, 442, 448, 468, 480, 520, 529, 561, 567, 576, 595, 624, 625, 640, 646, 675, 714, 729
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   4: {1,1}
   9: {2,2}
  12: {1,1,2}
  16: {1,1,1,1}
  25: {3,3}
  30: {1,2,3}
  40: {1,1,1,3}
  48: {1,1,1,1,2}
  49: {4,4}
  63: {2,2,4}
  64: {1,1,1,1,1,1}
  70: {1,3,4}
  81: {2,2,2,2}
  84: {1,1,2,4}
		

Crossrefs

Partitions of this type are counted by A322439.
For parts instead of partial sums we have A344415, counted by A035363.
A025065 counts palindromic partitions, ranked by A265640.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A301987 lists numbers whose sum of prime indices equals their product.
A322109 ranks partitions of n with no part > n/2, counted by A110618.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],MemberQ[Accumulate[prix[#]],Total[prix[#]]/2]&]