A363263 Number of integer partitions of n covering an initial interval of positive integers with a unique co-mode.
0, 1, 1, 1, 2, 3, 2, 4, 4, 5, 7, 10, 8, 13, 13, 15, 19, 25, 24, 35, 35, 43, 50, 61, 59, 79, 83, 98, 111, 137, 137, 176, 187, 219, 240, 284, 298, 360, 385, 444, 485, 568, 600, 706, 763, 867, 951, 1088, 1168, 1345, 1453, 1641, 1792, 2023, 2179, 2467, 2673, 2988
Offset: 0
Keywords
Examples
The a(1) = 1 through a(10) = 7 partitions: 1 11 111 211 221 21111 2221 22211 22221 33211 1111 2111 111111 22111 221111 32211 222211 11111 211111 2111111 2211111 322111 1111111 11111111 21111111 2221111 111111111 22111111 211111111 1111111111 The a(9) = 5 through a(12) = 8 partitions: (22221) (33211) (33221) (2222211) (32211) (222211) (222221) (3222111) (2211111) (322111) (322211) (3321111) (21111111) (2221111) (332111) (32211111) (111111111) (22111111) (2222111) (222111111) (211111111) (3221111) (2211111111) (1111111111) (22211111) (21111111111) (221111111) (111111111111) (2111111111) (11111111111)
Crossrefs
The complement is counted by A363264.
Programs
-
Mathematica
comsi[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&]; Table[If[n==0,0,Length[Select[IntegerPartitions[n],Union[#]==Range[Max@@#]&&Length[comsi[#]]==1&]]],{n,0,30}]
Comments