This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363264 #5 Jun 07 2023 08:31:56 %S A363264 0,0,0,1,0,0,2,1,2,3,3,2,7,5,9,12,13,13,22,19,29,33,39,43,63,63,82,94, %T A363264 111,119,159,164,203,229,272,301,370,400,479,538,628,692,826,904,1053, %U A363264 1181,1353,1502,1742,1919,2205,2456,2790,3097,3539,3911,4435,4929 %N A363264 Number of integer partitions of n covering an initial interval of positive integers with a more than one co-mode. %C A363264 We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}. %t A363264 comsi[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&]; %t A363264 Table[If[n==0,0,Length[Select[IntegerPartitions[n],Union[#]==Range[Max@@#]&&Length[comsi[#]]>1&]]],{n,0,30}] %Y A363264 For parts instead of multiplicities we have A000009, complement A087897. %Y A363264 For multisets instead of partitions we have A363224, complement A105039. %Y A363264 The complement is counted by A363263. %Y A363264 For mode we have A363485, complement A363484. %Y A363264 A000041 counts integer partitions, A000009 covering an initial interval. %Y A363264 A067029 counts minima in prime factorization, co-modes A362613. %Y A363264 A071178 counts maxima in prime factorization, modes A362611. %Y A363264 A097979 counts normal multisets with a unique mode, complement A363262. %Y A363264 A362607 counts partitions with multiple modes, co-modes A362609. %Y A363264 A362608 counts partitions with a unique mode, co-mode A362610. %Y A363264 A362614 counts partitions by number of modes, co-modes A362615. %Y A363264 Cf. A002865, A008284, A096765, A117989, A243737, A275870, A362612. %K A363264 nonn %O A363264 0,7 %A A363264 _Gus Wiseman_, Jun 06 2023