This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363265 #10 Aug 16 2023 11:04:11 %S A363265 0,1,1,2,1,1,1,2,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,3,2,1,2,2,1,1,1,5,1,1, %T A363265 1,4,1,1,1,3,1,1,1,2,2,1,1,6,2,2,1,2,1,3,1,3,1,1,1,3,1,1,2,7,1,1,1,2, %U A363265 1,1,1,8,1,1,2,2,1,1,1,6,4,1,1,3,1,1,1 %N A363265 Number of integer factorizations of n with a unique mode. %C A363265 An integer factorization of n is a multiset of positive integers > 1 with product n. %C A363265 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}. %C A363265 Conjecture: 9 is missing from this sequence. %e A363265 The a(n) factorizations for n = 2, 4, 16, 24, 48, 72: %e A363265 (2) (4) (16) (24) (48) (72) %e A363265 (2*2) (4*4) (2*2*6) (3*4*4) (2*6*6) %e A363265 (2*2*4) (2*2*2*3) (2*2*12) (3*3*8) %e A363265 (2*2*2*2) (2*2*2*6) (2*2*18) %e A363265 (2*2*3*4) (2*2*2*9) %e A363265 (2*2*2*2*3) (2*2*3*6) %e A363265 (2*3*3*4) %e A363265 (2*2*2*3*3) %t A363265 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A363265 modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A363265 Table[Length[Select[facs[n],Length[modes[#]]==1&]],{n,100}] %Y A363265 The complement for partitions is A362607, ranks A362605. %Y A363265 The version for partitions is A362608, ranks A356862. %Y A363265 A001055 counts factorizations, strict A045778, ordered A074206. %Y A363265 A089723 counts constant factorizations. %Y A363265 A316439 counts factorizations by length, A008284 partitions. %Y A363265 A339846 counts even-length factorizations, A339890 odd-length. %Y A363265 Cf. A240219, A326622, A333487, A335434, A347438, A362610, A362611, A362612, A362614, A363723. %K A363265 nonn %O A363265 1,4 %A A363265 _Gus Wiseman_, Jun 27 2023