This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363270 #35 Jul 02 2023 00:02:19 %S A363270 1,1,1,1,1,3,13,1,7,5,13,3,5,7,5,1,13,9,11,5,1,11,5,3,19,13,31,7,11, %T A363270 15,121,1,25,17,5,9,7,19,67,5,31,21,49,11,17,23,121,3,37,25,29,13,5, %U A363270 27,47,7,43,29,67,15,23,31,91,1,49,33,19,17,13,35,121,9,55 %N A363270 The result, starting from n, of Collatz steps x -> (3x+1)/2 while odd, followed by x -> x/2 while even. %C A363270 Each x -> (3x+1)/2 step decreases the number of trailing 1-bits by 1 so A007814(n+1) of them, and the result of those steps is 2*A085062(n). %H A363270 Dustin Theriault, <a href="/A363270/b363270.txt">Table of n, a(n) for n = 1..10000</a> %F A363270 a(n) = OddPart((3/2)^A007814(n+1)*(n+1) - 1), where OddPart(t) = A000265(t). %F A363270 a(n) = OddPart(A085062(n)). %t A363270 OddPart[x_] := x / 2^IntegerExponent[x, 2] %t A363270 Table[OddPart[(3/2)^IntegerExponent[i + 1, 2] * (i + 1) - 1], {i, 100}] %o A363270 (C) int a(int n) { %o A363270 while (n & 1) n += (n >> 1) + 1; %o A363270 while (!(n & 1)) n >>= 1; %o A363270 return n; %o A363270 } %o A363270 (PARI) oddpart(n) = n >> valuation(n, 2); \\ A000265 %o A363270 a(n) = oddpart((3/2)^valuation(n+1, 2)*(n+1) - 1); \\ _Michel Marcus_, May 24 2023 %Y A363270 Cf. A000265, A085062. %Y A363270 Cf. A160541 (number of iterations). %Y A363270 Cf. A075677. %K A363270 nonn,easy %O A363270 1,6 %A A363270 _Dustin Theriault_, May 23 2023