This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363271 #20 May 26 2023 08:51:49 %S A363271 1,2,3,4,5,6,7,8,10,1,2,3,4,5,6,7,8,9,11,2,3,4,5,6,7,8,9,10,12,3,4,5, %T A363271 6,7,8,9,10,11,13,4,5,6,7,8,9,10,11,12,14,5,6,7,8,9,10,11,12,13,15,6, %U A363271 7,8,9,10,11,12 %N A363271 Vertical sum of n in base 10. %C A363271 The Sum_{n>=1} a(n)/10^n = 10/81, it is the vertical sum of each integer. The pattern is easy to see but apparently impossible for a program to find any closed form or recurrence. The sequence is generated by adding each integer with an offset of 1 at each step. %C A363271 If you sum integers with each term divided by 10^n, at n = 9 there are 2 terms in the column 9 + 1 = 10 which is a(10). %C A363271 Here is the actual sum: %C A363271 .100000000000000000000 %C A363271 .020000000000000000000 %C A363271 .003000000000000000000 %C A363271 .000400000000000000000 %C A363271 .000050000000000000000 %C A363271 .000006000000000000000 %C A363271 .000000700000000000000 %C A363271 .000000080000000000000 %C A363271 .000000009000000000000 %C A363271 .000000001000000000000 %C A363271 .000000000110000000000 %C A363271 .000000000012000000000 %C A363271 .000000000001300000000 %C A363271 .000000000000140000000 %C A363271 .000000000000015000000 %C A363271 .000000000000001600000 %C A363271 .000000000000000170000 %C A363271 .000000000000000018000 %C A363271 .000000000000000001900 %C A363271 .000000000000000000200 %C A363271 .000000000000000000021 %C A363271 .000000000000000000002 %C A363271 ... %C A363271 By adding each column we get a(n), which explains why a(9) = 10. %e A363271 The original sequence is 1 2 3 4 5 6 7 8 9 10 11 12 ... but when we sum digit per digit (in base 10) the sequence is not a rational fraction. %p A363271 p:=proc(v) local n, aa, nn, s, k, t; %p A363271 aa := v; %p A363271 nn := nops(aa); %p A363271 s := [seq(1 + aa[k]/10^k, %p A363271 k = 1 .. nops(aa))]; %p A363271 [seq(sum(trunc(10*frac(10^t*s[k])), %p A363271 k = 1 .. nops(aa)), %p A363271 t = 0 .. nops(aa))] %p A363271 end; %p A363271 # enter a sequence like a(n) = [1, 2, 3, 4, ...] it will return a sequence r such that sum(r(n)/10^n) is equal to sum(a(n)/10^n). %Y A363271 Cf. A021085 (10/81), A089400 (binary analog). %K A363271 nonn,base %O A363271 1,2 %A A363271 _Simon Plouffe_, May 24 2023