This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363281 #19 Mar 27 2025 05:43:30 %S A363281 87,159,183,199,204,207,231,247,252,303,319,324,327,343,348,351,364, %T A363281 367,372,399,423,439,444,463,468,471,484,487,492,495,511,516,532,535, %U A363281 540,543,556,559,564,567,583,588,591,604,607,612,628,655,660,663,676,679,684,700,703,708 %N A363281 Numbers which are the sum of 4 squares of distinct primes. %H A363281 David A. Corneth, <a href="/A363281/b363281.txt">Table of n, a(n) for n = 1..10000</a> %e A363281 87 is a term as 87 = 2^2 + 3^2 + 5^2 + 7^2. %t A363281 Select[Range@1000, %t A363281 Length[PowersRepresentations[#, 4, 2] // Select[AllTrue@PrimeQ] // %t A363281 Select[DuplicateFreeQ]] > 0 &] %o A363281 (Python) %o A363281 from itertools import combinations as comb %o A363281 ps=[p**2 for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]] %o A363281 a=[n for n in range(1001) if n in [sum(n) for n in list(comb(ps,4))]] %o A363281 print(a) %o A363281 (PARI) upto(n) = {if(n <= 86, return([])); my(pr = primes(primepi(sqrtint(n - 38))), res = List()); forvec(v = vector(4, i, [1, #pr]), c = sum(i = 1, #v, pr[v[i]]^2); if(c <= n, listput(res, c)), 2); listsort(res, 1); res} \\ _David A. Corneth_, Jul 12 2023 %Y A363281 Cf. A133524, A051395. %K A363281 easy,nonn %O A363281 1,1 %A A363281 _Zhining Yang_, May 25 2023