This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363286 #11 Jul 17 2023 09:03:29 %S A363286 3,5,7,11,13,17,19,23,29,37,41,47,53,59,61,67,71,79,83,97,101,103,107, %T A363286 131,137,139,149,163,167,173,179,181,191,193,197,199,211,227,239,263, %U A363286 269,271,293,311,313,317,347,349,359,367,373,379,383,389,401,409,419 %N A363286 Odd primes p such that the congruence 2^x == 1 (mod p) has no solution for 0 < x < (p - 1)/2. %C A363286 An odd prime p belongs to this sequence if and only if A001917(A000720(p)) is equal to 1 or 2. %F A363286 a(n) ~ (3/2)*n*log((3/2)*n). %o A363286 (Magma) [p: p in [3..419 by 2] | IsPrime(p) and (p-1)/Modorder(2, p) le 2]; %o A363286 (PARI) isok(p) = p%2 && isprime(p) && (p-1)/znorder(Mod(2, p))<=2; %o A363286 (Python) %o A363286 from itertools import islice %o A363286 from sympy import nextprime, n_order %o A363286 def A363286_gen(startvalue=3): # generator of terms >= startvalue %o A363286 p = max(startvalue,3)-1 %o A363286 while (p:=nextprime(p)): %o A363286 if n_order(2,p)<<1 >= p-1: %o A363286 yield p %o A363286 A363286_list = list(islice(A363286_gen(),30)) # _Chai Wah Wu_, Jul 17 2023 %Y A363286 Cf. A001917, A014664. %K A363286 nonn %O A363286 1,1 %A A363286 _Arkadiusz Wesolowski_, May 25 2023