A363290 Decimal expansion of the unique x > 0 such that Sum_{n>=0} 1/x^(n!) = 1.
2, 4, 2, 4, 4, 1, 0, 4, 4, 9, 0, 1, 5, 6, 5, 3, 2, 3, 6, 3, 7, 2, 3, 7, 4, 5, 9, 7, 0, 7, 9, 4, 9, 7, 0, 8, 4, 1, 9, 5, 8, 4, 7, 7, 3, 2, 7, 1, 4, 7, 6, 9, 4, 3, 4, 2, 1, 2, 6, 5, 5, 9, 0, 0, 1, 5, 2, 7, 9, 8, 7, 0, 6, 7, 0, 7, 5, 4, 7, 4, 6, 7, 5, 0, 9, 1, 3, 6, 4, 4, 0, 0, 7, 7, 0, 3, 5
Offset: 1
Examples
For x = 2.4244... and remembering that 0! = 1, we have Sum_{n >= 0} 1/x^n! ~ 2 * 1/2.4244 + 1/2.4244^2 + 1/2.4244^6 + 1/2.4244^24 = 1.0000...
Crossrefs
Cf. A076187.
Programs
-
PARI
default(realprecision, 100); solve(x=2,3, sum(n=0,19, x^-n!)-1)
Formula
x = 2.424410449015653236372374597079497084...