cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363292 Numbers whose sum of (distinct) prime divisors (A008472) equals 7.

This page as a plain text file.
%I A363292 #13 Jul 27 2023 15:23:21
%S A363292 7,10,20,40,49,50,80,100,160,200,250,320,343,400,500,640,800,1000,
%T A363292 1250,1280,1600,2000,2401,2500,2560,3200,4000,5000,5120,6250,6400,
%U A363292 8000,10000,10240,12500,12800,16000,16807,20000,20480,25000,25600,31250,32000,40000,40960
%N A363292 Numbers whose sum of (distinct) prime divisors (A008472) equals 7.
%H A363292 Amiram Eldar, <a href="/A363292/b363292.txt">Table of n, a(n) for n = 1..1000</a>
%F A363292 Union of A000420 = {7^k ; k > 0} and A033846 = {2^j*5^k ; j, k > 0}.
%F A363292 Sum_{n>=1} 1/a(n) = 5/12. - _Amiram Eldar_, Jul 27 2023
%t A363292 seq[max_] := Union[Join[7^Range[Floor[Log[7, max]]], Flatten@ Table[2^i*5^j, {i, 1, Log2[max]}, {j, 1, Log[5, max/2^i]}]]]; seq[40000] (* _Amiram Eldar_, Jul 27 2023 *)
%o A363292 (PARI) select( {is_A363292(n)=vecsum(factor(n,0)[,1])==7}, [1..13^4]) \\ alternatively: [n | n<-[1..13^4], A008472(n)==7]
%Y A363292 Cf. A008472 (sopf), A000420 (7^n), A033846 (2^m*5^n), A362948 (A008472 = 5).
%K A363292 nonn,easy
%O A363292 1,1
%A A363292 _M. F. Hasler_, Jul 20 2023