This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363312 #13 Jun 09 2023 21:25:20 %S A363312 3,8,68,656,6924,77816,912504,11043616,136909712,1729812880, %T A363312 22193496988,288368706416,3786876943856,50180784019384, %U A363312 670150485880336,9010466250798080,121871951481594296,1657086342551799752,22637216782139196588,310547100988853539728 %N A363312 Expansion of g.f. A(x) satisfying 1/2 = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(n-1), with a(0) = 3. %C A363312 a(n) == 0 (mod 2^2) for n > 0. %H A363312 Paul D. Hanna, <a href="/A363312/b363312.txt">Table of n, a(n) for n = 0..200</a> %F A363312 G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following. %F A363312 (1) 1/2 = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(n-1). %F A363312 (2) 1/2 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n^2) / (1 - x^n*A(x))^(n+1). %F A363312 (3) A(x)/2 = Sum_{n=-oo..+oo} x^(2*n) * (A(x) - x^n)^(n-1). %F A363312 (4) A(x)/2 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 - x^n*A(x))^(n+1). %e A363312 G.f.: A(x) = 3 + 8*x + 68*x^2 + 656*x^3 + 6924*x^4 + 77816*x^5 + 912504*x^6 + 11043616*x^7 + 136909712*x^8 + 1729812880*x^9 + ... %o A363312 (PARI) {a(n) = my(A=[3]); for(i=1,n, A = concat(A,0); %o A363312 A[#A] = polcoeff(-2 + 2^2*sum(m=-#A, #A, x^m * (Ser(A) - x^m)^(m-1) ), #A-1););A[n+1]} %o A363312 for(n=0,30,print1(a(n),", ")) %Y A363312 Cf. A357227, A363141, A363313, A363314, A363315. %K A363312 nonn %O A363312 0,1 %A A363312 _Paul D. Hanna_, May 28 2023