cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363346 a(n) is the length of the initial transient, before the periodic part, on the n-th diagonal from the left of rule-30 1-D cellular automaton, when started from a single ON cell.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 3, 4, 5, 8, 6, 11, 8, 13, 12, 14, 12, 15, 15, 16, 16, 17, 15, 18, 18, 20, 19, 23, 19, 28, 22, 29, 30, 35, 31, 36, 34, 39, 36, 41, 38, 47, 40, 48, 48, 50, 48, 51, 50, 54, 50, 55, 55, 56, 56, 56, 59, 56, 60, 61, 63, 62, 64
Offset: 1

Views

Author

Paolo Xausa, May 28 2023

Keywords

Examples

			In the following diagram, showing the first 22 evolution steps of the CA, three diagonals are highlighted, along with their transient and periodic parts (the rest of the CA is represented by hyphens, for better visualization).
.
                              3rd diagonal
                           __ Transient = 1
                        - /   Repeat    = 0
                       --1    a(3)      = 1
                      --0--
                     --0----      12th diagonal
                    --0------  __ Transient = 01
                   --0--------/   Repeat    = 0010
                  --0--------0-   a(12)     = 2
                 --0--------1---
                --0--------0-----  __ 20th diagonal
               --0--------0-------/   Transient = 01000101
              --0--------1-------0-   Repeat    = 1100
             --0--------0-------1---  a(20)     = 8
            --0--------0-------0-----
           --0--------0-------0-------
          --0--------1-------0---------
         --0--------0-------1-----------
        --0--------0-------0-------------
       --0--------0-------1---------------
      --0--------1-------1-----------------
     --0--------0-------1-------------------
    --0--------0-------0---------------------
   --0--------0-------0-----------------------
  --0--------1-------1-------------------------
.
In the following diagram the transient cells on every diagonal are represented by asterisks. This results in the division of the CA into two regions: ordered behavior on the left, and apparently chaotic behavior on the right. The boundary between the two regions moves to the left, on average, by about 0.252 cells every evolution step (see Wolfram, 2002 and 2019).
.
                        -
                       --*
                      -----
                     -------
                    ---------
                   ----------*
                  -----------*-
                 -----------*-**
                -------------****
               -------------******
              --------------*******
             ---------------********
  Order     ---------------**********     Disorder
           ----------------***********
          ----------------*************
         ----------------*-*************
        ------------------***************
       ------------------*****************
      ------------------*-*****************
     ------------------*-*******************
    --------------------*********************
   --------------------***********************
  --------------------*************************
.
		

Crossrefs

Cf. A070950, A094605 (periods of diagonals from the right).
Cf. A363344 (diagonals), A363345 (eventual periods), A364241.

Programs

  • Mathematica
    A363346list[nmax_]:=With[{ca=CellularAutomaton[86,{{1},0},{2nmax,{1-nmax,nmax}}]},Array[Length[First[FindTransientRepeat[Drop[Diagonal[ca,nmax-#],Ceiling[(#-1)/2]],2]]]&,nmax]];A363346list[100]
  • Python
    # See Brunnbauer link, Appendix 3.