This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363352 #10 Aug 24 2023 10:15:33 %S A363352 76,114,116,174,222,236,238,246,255,258,282,285,286,310,316,322,325, %T A363352 333,338,357,369,374,385,387,434,436,474,534,539,549,555,574,582,595, %U A363352 596,710,715,716,722,725,762,777,782,786,795,796,834,894,1034,1074,1076,1146,1158,1162,1182,1185,1194,1310 %N A363352 Triprimes that are the concatenation of a prime and a semiprime (in that order). %C A363352 If p is a prime and the number of digits of 3*p is in A363353, then the concatenation of p and 3*p is a term. The first term of this type is a(2728) = 37111. %e A363352 a(3) = 116 is a term because 11 is a prime, 6 = 2*3 is a semiprime, and their concatenation 116 = 2^2 * 29 is a triprime. %p A363352 P[1]:= [2,3,5,7]: %p A363352 for d from 2 to 3 do P[d]:= select(isprime,[seq(i,i=10^(d-1)+1..10^d-1,2)]) od: %p A363352 for d from 1 to 3 do SP[d]:= select(t -> numtheory:-bigomega(t) = 2, [$10^(d-1).. 10^d-1]) od: %p A363352 R:= {}: %p A363352 for d from 2 to 4 do %p A363352 for d1 from 1 to d-1 do %p A363352 d2:= d-d1; %p A363352 V:= select(t -> numtheory:-bigomega(t)=3, {seq(seq(dcat(a,b),a=P[d1]),b=SP[d2])}); %p A363352 R:= R union V; %p A363352 od %p A363352 od: %p A363352 sort(convert(R,list)); %Y A363352 Cf. A001358, A014612, A363353. %K A363352 nonn,base %O A363352 1,1 %A A363352 _Robert Israel_, Aug 16 2023