This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363373 #6 May 30 2023 07:45:57 %S A363373 0,1,2,6,9,14,33,62,177,886,1155,1719,3255,4018,13377,19942,46022, %T A363373 103401,193426,422751,634113,1080742,2850591,5493662,10252635, %U A363373 25631525,51217666,135055839 %N A363373 a(n) is the least k such that, if x_0, x_1, x_2, ... are the iterations of the arithmetic derivative A003415 starting with x_0 = k, x_0 > x_1 > ... > x_n. %C A363373 a(n) is the least k such that the first n iterations of A003415 starting at k are decreasing. %C A363373 a(n) is the least k such that A361869(k) = n. %e A363373 a(3) = 6 because the iterations of A003415 starting at 6 are 6 > 5 > 1 > 0 = 0. %e A363373 First differs from A189760 and A327967 at 9, where a(9) = 886 (corresponding to iterations 886 > 445 > 94 > 49 > 14 > 9 > 6 > 5 > 1 > 0) while A189760(9) = A327967(9) = 414 < A003415(414) = 501. %p A363373 ader:= proc(n) local t; %p A363373 n * add(t[2]/t[1], t = ifactors(n)[2]) %p A363373 end proc: %p A363373 f:= proc(n) option remember; local t; %p A363373 t:= ader(n); %p A363373 if t < n then procname(t)+1 else 0 fi %p A363373 end proc: %p A363373 M:= 25: V:= Array(0..M,-1): count:= 0: %p A363373 for n from 0 while count <= M do %p A363373 v:= f(n); %p A363373 if V[v] = -1 then count:= count+1; V[v]:= n fi; %p A363373 od: %p A363373 convert(V,list); %Y A363373 Cf. A003415, A189760, A327967, A361869. %K A363373 nonn,more %O A363373 0,3 %A A363373 _Robert Israel_, May 29 2023