A363393 Triangle read by rows. T(n, k) = [x^k] (2 - Sum_{k=0..n} binomial(n, k)*Euler(k, 1)*(-2*x)^k).
1, 1, 1, 1, 2, 0, 1, 3, 0, -2, 1, 4, 0, -8, 0, 1, 5, 0, -20, 0, 16, 1, 6, 0, -40, 0, 96, 0, 1, 7, 0, -70, 0, 336, 0, -272, 1, 8, 0, -112, 0, 896, 0, -2176, 0, 1, 9, 0, -168, 0, 2016, 0, -9792, 0, 7936, 1, 10, 0, -240, 0, 4032, 0, -32640, 0, 79360, 0
Offset: 0
Examples
The triangle T(n, k) starts: [0] 1; [1] 1, 1; [2] 1, 2, 0; [3] 1, 3, 0, -2; [4] 1, 4, 0, -8, 0; [5] 1, 5, 0, -20, 0, 16; [6] 1, 6, 0, -40, 0, 96, 0; [7] 1, 7, 0, -70, 0, 336, 0, -272; [8] 1, 8, 0, -112, 0, 896, 0, -2176, 0; [9] 1, 9, 0, -168, 0, 2016, 0, -9792, 0, 7936;
Links
- Peter Luschny, Illustrating the polynomials P363393.
- Peter Luschny, Swiss-Knife polynomials and Euler numbers.
- Peter Luschny, The Swiss-Knife polynomials.
- Index entries for sequences related to Euler numbers.
Crossrefs
Programs
-
Maple
P := n -> add(binomial(n + 1, j)*bernoulli(j, 1)*(4^j - 2^j)*x^(j-1), j = 0..n+1) / (n + 1): T := (n, k) -> coeff(P(n), x, k): seq(seq(T(n, k), k = 0..n), n = 0..9); # Second program, based on the generating functions of the columns: ogf := n -> -(-2)^n * euler(n, 1) / (x - 1)^(n + 1): ser := n -> series(ogf(n), x, 16): T := (n, k) -> coeff(ser(k), x, n - k): for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Alternative, based on the bivariate generating function: egf := exp(x*y) * (1 + tanh(y)): ord := 20: sery := series(egf, y, ord): polx := n -> coeff(sery, y, n): coefx := n -> seq(n! * coeff(polx(n), x, n - k), k = 0..n): for n from 0 to 9 do coefx(n) od;
-
Python
from functools import cache @cache def T(n: int, k: int) -> int: if k == 0: return 1 if k % 2 == 0: return 0 if k == n: return 1 - sum(T(n, j) for j in range(1, n, 2)) return (T(n - 1, k) * n) // (n - k) for n in range(10): print([T(n, k) for k in range(n + 1)])
-
SageMath
def B(n: int): return bernoulli_polynomial(1, n) def P(n: int): return sum(binomial(n + 1, j) * B(j) * (4^j - 2^j) * x^(j - 1) for j in range(n + 2)) / (n + 1) for n in range(10): print(P(n).list())
Formula
For a recursion see the Python program.
T(n, k) = [x^k] P(n, x) where P(n, x) = (1 / (n + 1)) * Sum_{j=0..n+1} binomial(n + 1, j) * Bernoulli(j, 1) * (4^j - 2^j) * x^(j - 1).
Integral_{x=-n..n} P(n, x)/2 dx = n.
T(n, k) = [x^(n - k)] -(-2)^k * Euler(k, 1) / (x - 1)^(k + 1).
T(n, k) = n! * [x^(n - k)][y^n] exp(x*y) * (1 + tanh(y)).
Extensions
Simpler name by Peter Luschny, Nov 17 2024
Comments