This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363394 #20 Nov 17 2024 08:30:13 %S A363394 1,1,1,1,2,-1,1,3,-3,-2,1,4,-6,-8,5,1,5,-10,-20,25,16,1,6,-15,-40,75, %T A363394 96,-61,1,7,-21,-70,175,336,-427,-272,1,8,-28,-112,350,896,-1708, %U A363394 -2176,1385,1,9,-36,-168,630,2016,-5124,-9792,12465,7936 %N A363394 Triangle read by rows. T(n, k) = A081658(n, k) + A363393(n, k) for k > 0 and T(n, 0) = 1. %H A363394 Richard P. Stanley, <a href="https://doi.org/10.48550/arXiv.0912.4240">A survey of alternating permutations</a>, arXiv:0912.4240 [math.CO], 2009. %H A363394 <a href="/index/Eu#Euler">Index entries for sequences related to Euler numbers.</a> %F A363394 |T(n, k)| = (-1)^(n - k) * n! * [x^(n - k)][y^n] (sec(y) + tan(y)) / exp(x*y). %F A363394 T(n, k) = [x^(n - k)] -2^(k-(0^k))*(Euler(k, 0) + Euler(k, 1/2)) / (x-1)^(k + 1). %F A363394 For a recursion see the Python program. %F A363394 T(n, k) = [x^n] ((-1) + Sum_{j=0..n} binomial(n, j)*(Euler(j, 1) + Euler(j, 1/2))*(2*x)^j). - _Peter Luschny_, Nov 17 2024 %e A363394 The triangle T(n, k) begins: %e A363394 [0] 1; %e A363394 [1] 1, 1; %e A363394 [2] 1, 2, -1; %e A363394 [3] 1, 3, -3, -2; %e A363394 [4] 1, 4, -6, -8, 5; %e A363394 [5] 1, 5, -10, -20, 25, 16; %e A363394 [6] 1, 6, -15, -40, 75, 96, -61; %e A363394 [7] 1, 7, -21, -70, 175, 336, -427, -272; %e A363394 [8] 1, 8, -28, -112, 350, 896, -1708, -2176, 1385; %e A363394 [9] 1, 9, -36, -168, 630, 2016, -5124, -9792, 12465, 7936; %p A363394 # Variant, computes abs(T(n, k)): %p A363394 P := n -> n!*coeff(series((sec(y) + tan(y))/exp(x*y), y, 24), y, n): %p A363394 seq(print(seq((-1)^(n - k)*coeff(P(n), x, n - k), k = 0..n)), n = 0..9); %o A363394 (Python) %o A363394 from functools import cache %o A363394 @cache %o A363394 def T(n: int, k: int) -> int: %o A363394 if k == 0: return 1 %o A363394 if k == n: %o A363394 p = k % 2 %o A363394 return p - sum(T(n, j) for j in range(p, n - 1, 2)) %o A363394 return (T(n - 1, k) * n) // (n - k) %o A363394 for n in range(10): print([T(n, k) for k in range(n + 1)]) %Y A363394 Variants (row reversed): A109449, A247453. %Y A363394 Cf. A081658 (signed secant part), A363393 (signed tangent part), A000111 (main diagonal), A122045, A155585 (aerated main diagonal), A000667, A062162 (row sums of signless variant). %K A363394 sign,tabl %O A363394 0,5 %A A363394 _Peter Luschny_, Jun 06 2023