cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363396 a(n) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} binomial(k, j) * (2*j + 1)^n. Row sums of A363398.

This page as a plain text file.
%I A363396 #7 Jun 02 2023 08:51:40
%S A363396 1,6,68,1280,33104,1089312,43575104,2053324800,111402371328,
%T A363396 6839846858240,468857355838464,35494174578769920,2941165554120118272,
%U A363396 264782344216518696960,25734702989598729256960,2685663154208346271121408,299529317622247725531725824,35554080433116190335493865472
%N A363396 a(n) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} binomial(k, j) * (2*j + 1)^n. Row sums of A363398.
%F A363396 a(n) ~ sqrt(1 + LambertW(exp(-1))) * 2^n * n^n / ((1 - LambertW(exp(-1))) * exp(n) * LambertW(exp(-1))^(n + 1/2)). - _Vaclav Kotesovec_, Jun 02 2023
%p A363396 a := n -> add(add(binomial(k, j)*(2*j + 1)^n, j=0..k)*2^(n-k), k=0..n):
%p A363396 seq(a(n), n = 0..17);
%t A363396 Table[Sum[2^(n-k) * Sum[Binomial[k, j] * (2*j+1)^n, {j, 0, k}], {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Jun 02 2023 *)
%Y A363396 Cf. A363398.
%K A363396 nonn
%O A363396 0,2
%A A363396 _Peter Luschny_, Jun 02 2023