This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363399 #20 Oct 06 2023 04:22:49 %S A363399 1,3,2,7,16,9,15,88,135,64,31,416,1296,1536,625,63,1824,10206,22528, %T A363399 21875,7776,127,7680,72171,262144,453125,373248,117649,255,31616, %U A363399 478953,2670592,7265625,10357632,7411887,2097152,511,128512,3057426,25034752,100000000,218350080,265180846,167772160,43046721 %N A363399 Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * (j + 1)^n), (tangent case). %C A363399 Here we give an inclusion-exclusion representation of 2^n*Euler(n, 1) = A155585(n), in A363398 we give such a representation for 2^n*Euler(n), and in A363400 one for the combined sequences. %H A363399 <a href="/index/Eu#Euler">Index entries for sequences related to Euler numbers.</a> %F A363399 Sum_{k=0..n} (-1)^k * T(n, k) = 2^n*Euler(n, 1) = (-2)^n*Euler(n, 0) = A155585(n). %F A363399 From _Detlef Meya_, Oct 04 2023: (Start) %F A363399 T(n, k) = (k + 1)^n*binomial(n + 1, k + 1)*hypergeom([1, k - n], [k + 2], -1). %F A363399 T(n, k) = (k + 1)^n * (2^(n + 1) - add(binomial(n + 1, j), j=0..k)). (End) %e A363399 The triangle T(n, k) begins: %e A363399 [0] 1; %e A363399 [1] 3, 2; %e A363399 [2] 7, 16, 9; %e A363399 [3] 15, 88, 135, 64; %e A363399 [4] 31, 416, 1296, 1536, 625; %e A363399 [5] 63, 1824, 10206, 22528, 21875, 7776; %e A363399 [6] 127, 7680, 72171, 262144, 453125, 373248, 117649; %e A363399 [7] 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152; %p A363399 P := (n, x) -> add(add(x^j*binomial(k, j)*(j + 1)^n, j=0..k)*2^(n - k), k = 0..n): %p A363399 T := (n, k) -> coeff(P(n, x), x, k): seq(seq(T(n, k), k = 0..n), n = 0..8); %t A363399 (* From _Detlef Meya_, Oct 04 2023: (Start) *) %t A363399 T[n_, k_] := (k+1)^n*(2^(n+1)-Sum[Binomial[n+1, j], {j, 0, k}]); %t A363399 (* Or *) %t A363399 T[n_, k_] := (k+1)^n*Binomial[n+1, k+1]*Hypergeometric2F1[1, k-n, k+2, -1]; %t A363399 Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* End *) %Y A363399 Cf. A155585 (alternating row sums), A363397 (row sums), A126646 (column 0), A000169 (main diagonal), A163395 (central terms), A084623. %Y A363399 Cf. A363398 (secant case), A363400 (combined case). %K A363399 nonn,tabl %O A363399 0,2 %A A363399 _Peter Luschny_, May 31 2023