This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363422 #23 Jul 27 2023 12:16:40 %S A363422 351,621,886,5931,86673,97533,425322,430762,920781,3524751,4495491, %T A363422 4834872,5594151,5941971,6218001,6801381,6916671,8630841,32331001, %U A363422 44235301,57982563,67968432,68577483,69617484,71673981,88873491,89943354,119910901,338752611 %N A363422 Numbers k which satisfy k = concat(a,b,...) and a*b*... = reverse(k), for some two or more a,b,... %C A363422 k > reverse(k) for all terms, sometimes narrowly, see a(28) = 119910901. %C A363422 This is easily shown: c=concat(a,b), c/a > (c-b)/a = 10^(#digits of b) > b; c > b*a. %C A363422 Follows for triple or higher concatenations by induction. %C A363422 Of the first 39 terms, 12 arise due to concatenations of only two numbers and are therefore also present in A281555. %C A363422 No terms yet found with a product of more than five numbers. %C A363422 Sometimes a term B relates to an earlier term A via a particular number N for which B=concat(A,N) and reverse(B)=reverse(A)*reverse(N). This is true of B=a(15), A=a(2), and N=8001 for example. %e A363422 153 = 3*51. %e A363422 1395 = 5*9*31. %e A363422 1945944 = 44*9*54*91. %e A363422 1008126 = 6*21*8001. %e A363422 171548496 = 6*94*84*51*71. %o A363422 (Python) %o A363422 # Find numbers with a de-concatenation that multiplies to their reverse. %o A363422 import math %o A363422 def digits(x): %o A363422 y = [] %o A363422 while x>0: %o A363422 y = [x%10] + y %o A363422 x//=10 %o A363422 return y %o A363422 def check(x): %o A363422 xx = digits(x) %o A363422 if xx[0] < xx[-1]: %o A363422 return %o A363422 for i in range(1,2**(len(xx)-1)): %o A363422 for dnum,digit in enumerate(xx): %o A363422 if dnum==0: %o A363422 thisProd = [xx[0]] %o A363422 elif i&(2**(dnum-1)): %o A363422 if digit==0: %o A363422 break %o A363422 thisProd += [digit] %o A363422 else: %o A363422 thisProd[-1] = thisProd[-1]*10+digit %o A363422 answer = math.prod(thisProd) %o A363422 if not answer%10==xx[0]: %o A363422 continue %o A363422 if digits(answer)[-1::-1]==xx: %o A363422 print('\r'+str(thisProd).replace(', ','x')[1:-1]) %o A363422 return %o A363422 return %o A363422 i=0 %o A363422 while True: %o A363422 i += 1 %o A363422 if not i%10000: %o A363422 print('\r'+str(i),end='') %o A363422 check(i) %Y A363422 Cf. A267939, A281555, A265737. %Y A363422 A267939 is contained in the intersection of this sequence and A281555. %K A363422 nonn,base %O A363422 1,1 %A A363422 _David L. Reens_, Jun 01 2023