cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363425 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(2*x^k) * x^k/k ).

This page as a plain text file.
%I A363425 #14 Jun 02 2023 10:19:10
%S A363425 1,1,2,10,89,1521,50300,3271556,422093896,108481853032,55651639993132,
%T A363425 57043042723263188,116881250986006852062,478862542730584327952230,
%U A363425 3923320929876295358082556380,64283613915707884845087288240332
%N A363425 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(2*x^k) * x^k/k ).
%H A363425 Seiichi Manyama, <a href="/A363425/b363425.txt">Table of n, a(n) for n = 0..82</a>
%F A363425 A(x) = Sum_{k>=0} a(k) * x^k = Product_{k>=0} (1+x^(k+1))^(2^k * a(k)).
%F A363425 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * d * 2^(d-1) * a(d-1) ) * a(n-k).
%o A363425 (PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*subst(A, x, 2*x^k)*x^k/k)+x*O(x^n))); Vec(A);
%Y A363425 Cf. A004111, A363426, A363427.
%Y A363425 Cf. A179470, A318368.
%K A363425 nonn
%O A363425 0,3
%A A363425 _Seiichi Manyama_, Jun 01 2023