cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363434 Total number of blocks containing only elements of the same parity in all partitions of [n].

This page as a plain text file.
%I A363434 #23 Sep 10 2023 09:47:38
%S A363434 0,1,2,7,24,97,412,1969,9898,54461,313944,1947613,12603100,86760255,
%T A363434 620559230,4682462777,36586620348,299664171115,2534306825064,
%U A363434 22355119509231,203115201624030,1917124624702475,18598998656476220,186822424157036439,1925326063016510832
%N A363434 Total number of blocks containing only elements of the same parity in all partitions of [n].
%H A363434 Alois P. Heinz, <a href="/A363434/b363434.txt">Table of n, a(n) for n = 0..250</a>
%H A363434 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F A363434 a(n) = Sum_{k=0..n} k * A124424(n,k).
%F A363434 a(n) = A363452(n) + A363453(n).
%F A363434 a(n) mod 2 = A000035(n).
%e A363434 a(3) = 7 = 0 + 1 + 2 + 1 + 3 : 123, 12|3, 13|2, 1|23, 1|2|3.
%p A363434 b:= proc(n, e, o, m) option remember; `if`(n=0, e+o,
%p A363434       (e+m)*b(n-1, o, e, m)+b(n-1, o, e+1, m)+
%p A363434        `if`(o=0, 0, o*b(n-1, o-1, e, m+1)))
%p A363434     end:
%p A363434 a:= n-> b(n, 0$3):
%p A363434 seq(a(n), n=0..24);
%t A363434 b[n_, e_, o_, m_] := b[n, e, o, m] = If[n == 0, e + o, (e + m)*b[n-1, o, e, m] + b[n - 1, o, e + 1, m] + If[o == 0, 0, o*b[n - 1, o - 1, e, m + 1]]];
%t A363434 a[n_] := b[n, 0, 0, 0];
%t A363434 Table[a[n], {n, 0, 24}] (* _Jean-François Alcover_, Sep 10 2023, after _Alois P. Heinz_ *)
%Y A363434 Cf. A000035, A124424, A363435, A363451, A363452, A363453.
%K A363434 nonn
%O A363434 0,3
%A A363434 _Alois P. Heinz_, Jun 01 2023