This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363442 #15 Jun 03 2023 09:01:57 %S A363442 1,3,9,54,270,1620,9828,61884,397062,2597508,17232831,115722918, %T A363442 784996434,5371325217,37029240315,256948639344,1793271890988, %U A363442 12579466538187,88645665923244,627235978623318,4454619888380355,31743030458459169,226890102674671245 %N A363442 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) * (3*x)^k/k ). %H A363442 Seiichi Manyama, <a href="/A363442/b363442.txt">Table of n, a(n) for n = 0..1000</a> %F A363442 A(x) = Sum_{k>=0} a(k) * x^k = Product_{k>=0} (1+3*x^(k+1))^a(k). %F A363442 a(0) = 1; a(n) = (-1/n) * Sum_{k=1..n} ( Sum_{d|k} d * (-3)^(k/d) * a(d-1) ) * a(n-k). %o A363442 (PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*subst(A, x, x^k)*(3*x)^k/k)+x*O(x^n))); Vec(A); %Y A363442 Cf. A004111, A363441, A363443. %Y A363442 Cf. A363426, A363439. %K A363442 nonn %O A363442 0,2 %A A363442 _Seiichi Manyama_, Jun 02 2023