cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363454 Number of partitions of [n] such that the number of blocks containing only odd elements equals the number of blocks containing only even elements and no block contains both odd and even elements.

This page as a plain text file.
%I A363454 #17 Jun 02 2023 21:57:23
%S A363454 1,0,1,1,2,4,11,28,87,266,952,3381,13513,53915,237113,1046732,5016728,
%T A363454 24186664,125121009,652084528,3615047527,20211789423,119384499720,
%U A363454 711572380960,4455637803543,28162688795697,186152008588691,1242276416218540,8636436319397292
%N A363454 Number of partitions of [n] such that the number of blocks containing only odd elements equals the number of blocks containing only even elements and no block contains both odd and even elements.
%H A363454 Alois P. Heinz, <a href="/A363454/b363454.txt">Table of n, a(n) for n = 0..650</a>
%H A363454 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F A363454 a(n) = Sum_{k=0..floor(n/2)} Stirling2(floor(n/2),k) * Stirling2(ceiling(n/2),k).
%F A363454 a(2n) = A047797(n).
%e A363454 a(0) = 1: () the empty partition.
%e A363454 a(1) = 0.
%e A363454 a(2) = 1: 1|2.
%e A363454 a(3) = 1: 13|2.
%e A363454 a(4) = 2: 13|24, 1|2|3|4.
%e A363454 a(5) = 4: 135|24, 13|2|4|5, 15|2|3|4, 1|2|35|4.
%e A363454 a(6) = 11: 135|246, 13|24|5|6, 13|26|4|5, 13|2|46|5, 15|24|3|6, 1|24|35|6, 15|26|3|4, 15|2|3|46, 1|26|35|4, 1|2|35|46, 1|2|3|4|5|6.
%e A363454 a(7) = 28: 1357|246, 135|24|6|7, 137|24|5|6, 13|24|57|6, 135|26|4|7, 135|2|46|7, 137|26|4|5, 13|26|4|57, 137|2|46|5, 13|2|46|57, 13|2|4|5|6|7, 157|24|3|6, 15|24|37|6, 17|24|35|6, 1|24|357|6, 157|26|3|4, 15|26|37|4, 157|2|3|46, 15|2|37|46, 15|2|3|4|6|7, 17|26|35|4, 1|26|357|4, 17|2|35|46, 1|2|357|46, 1|2|35|4|6|7, 17|2|3|4|5|6, 1|2|37|4|5|6, 1|2|3|4|57|6.
%p A363454 a:= n-> (h-> add(Stirling2(h, k)*Stirling2(n-h, k), k=0..h))(iquo(n, 2)):
%p A363454 seq(a(n), n=0..40);
%p A363454 # second Maple program:
%p A363454 b:= proc(n, x, y) option remember; `if`(abs(x-y)>n, 0,
%p A363454       `if`(n=0, 1, `if`(x>0, b(n-1, y, x)*x, 0)+b(n-1, y, x+1)))
%p A363454     end:
%p A363454 a:= n-> b(n, 0$2):
%p A363454 seq(a(n), n=0..40);
%Y A363454 Bisection gives A047797 (even part).
%Y A363454 Cf. A000110, A124419, A124425, A363451.
%K A363454 nonn
%O A363454 0,5
%A A363454 _Alois P. Heinz_, Jun 02 2023