This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A363463 #9 Aug 05 2023 22:02:48 %S A363463 1,3,6,12,18,48,36,192,72,84,144,3072,168,5985,576,336,504,26505,672, %T A363463 45045,840,1344,6510,129675,2016,1680,11970,4620,4032,389025,3360, %U A363463 888615,6552,13020,53010,6720,8736,855855,90090,23940,13104,2411955,17472,2417415,26040 %N A363463 a(n) is the smallest number k with exactly n of its divisors in A052294. %e A363463 a(0) = 1 because 1 has no divisors in A052294. %e A363463 2 has no divisors in A052294 and 3 has only one divisor 3 = 11_2 in A052294, so a(1) = 3. %e A363463 4 has no divisors in A052294, 5 has only the divisor 5 = 101_2 in A052294, 6 has divisors 3 = 11_2 and 6 = 110_2, so a(2) = 6. %t A363463 seq[len_, kmax_] := Module[{s = Table[0, {len}], c = 0, k = 1, ind}, While[k < kmax && c < len, ind = DivisorSum[k, 1 &, PrimeQ[DigitCount[#, 2, 1]] &] + 1; If[ind <= len && s[[ind]] == 0, c++; s[[ind]] = k]; k++]; s]; seq[40, 10^6] (* _Amiram Eldar_, Jul 10 2023 *) %o A363463 (Magma) fp:=func<n|IsPrime(Multiplicity(Intseq(n,2),1)) >; a:=[]; for n in [0..44] do k:= 1; while #[d:d in Divisors(k)|fp(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a; %o A363463 (PARI) a(n) = my(k=1); while (sumdiv(k, d, isprime(hammingweight(d))) != n, k++); k; \\ _Michel Marcus_, Jul 10 2023 %Y A363463 Cf. A052294. %K A363463 nonn,base %O A363463 0,2 %A A363463 _Marius A. Burtea_, Jul 08 2023