cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363473 Triangle read by rows: T(n, k) = k * prime(n - k + A061395(k)) for 1 < k <= n, and T(n, 1) = A008578(n).

This page as a plain text file.
%I A363473 #39 Jan 07 2024 14:03:47
%S A363473 1,2,4,3,6,9,5,10,15,8,7,14,21,12,25,11,22,33,20,35,18,13,26,39,28,55,
%T A363473 30,49,17,34,51,44,65,42,77,16,19,38,57,52,85,66,91,24,27,23,46,69,68,
%U A363473 95,78,119,40,45,50,29,58,87,76,115,102,133,56,63,70,121,31,62,93,92,145,114,161,88,99,110,143,36
%N A363473 Triangle read by rows: T(n, k) = k * prime(n - k + A061395(k)) for 1 < k <= n, and T(n, 1) = A008578(n).
%C A363473 Conjecture: this is a permutation of the natural numbers.
%C A363473 Generalized conjecture: Let T(n, k) = b(k) * prime(n - k + A061395(b(k))) for 1 < k <= n, and T(n, 1) = A008578(n), where b(n), n > 0, is a permutation of the natural numbers with b(1) = 1, then T(n, k), read by rows, is a permutation of the natural numbers.
%F A363473 T(n, n) = A253560(n) for n > 0.
%F A363473 T(n, 1) = A008578(n) for n > 0.
%F A363473 T(n, 2) = A001747(n) for n > 1.
%F A363473 T(n, 3) = A112773(n) for n > 2.
%F A363473 T(n, 4) = A001749(n-3) for n > 3.
%F A363473 T(n, 5) = A001750(n-2) for n > 4.
%F A363473 T(n, 6) = A138636(n-4) for n > 5.
%F A363473 T(n, 7) = A272470(n-3) for n > 6.
%e A363473 Triangle begins:
%e A363473 n\k :   1    2    3    4    5    6    7    8    9   10   11   12   13
%e A363473 =====================================================================
%e A363473  1  :   1
%e A363473  2  :   2    4
%e A363473  3  :   3    6    9
%e A363473  4  :   5   10   15    8
%e A363473  5  :   7   14   21   12   25
%e A363473  6  :  11   22   33   20   35   18
%e A363473  7  :  13   26   39   28   55   30   49
%e A363473  8  :  17   34   51   44   65   42   77   16
%e A363473  9  :  19   38   57   52   85   66   91   24   27
%e A363473 10  :  23   46   69   68   95   78  119   40   45   50
%e A363473 11  :  29   58   87   76  115  102  133   56   63   70  121
%e A363473 12  :  31   62   93   92  145  114  161   88   99  110  143   36
%e A363473 13  :  37   74  111  116  155  138  203  104  117  130  187   60  169
%e A363473 etc.
%o A363473 (PARI)
%o A363473 T(n, k) = { if(k==1, if(n==1, 1, prime(n-1)), i=floor((k+1)/2);
%o A363473             while(k % prime(i) != 0, i=i-1); k*prime(n-k+i)) }
%o A363473 (SageMath)
%o A363473 def prime(n): return sloane.A000040(n)
%o A363473 def A061395(n): return prime_pi(factor(n)[-1][0]) if n > 1 else 0
%o A363473 def T(n, k):
%o A363473      if k == 1: return prime(n - 1) if n > 1 else 1
%o A363473      return k * prime(n - k + A061395(k))
%o A363473 for n in range(1, 11): print([T(n,k) for k in range(1, n+1)])
%o A363473 # _Peter Luschny_, Jan 07 2024
%Y A363473 Cf. A000040, A001747, A001749, A001750, A008578, A112773, A138636, A253560, A272470, A061395.
%K A363473 nonn,easy,tabl
%O A363473 1,2
%A A363473 _Werner Schulte_, Jan 05 2024