A363476 a(n) = Fibonacci(n)^2 * Fibonacci(n+1)^3.
0, 1, 8, 108, 1125, 12800, 140608, 1565109, 17333064, 192329500, 2132531225, 23651979264, 262296652032, 2908947562937, 32260582549000, 357775937196300, 3967793428038237, 44003514081895936, 488006404120114496, 5412074146674562125, 60020821224245910600
Offset: 0
References
- F. Alayont and E. Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs; submitted.
Links
- José Heber Nieto, Problem 1854 solution, Mathematics Magazine, Vol. 84, No.4 (2011), pp. 300-301.
- Marian Tetiva, Problem 1854, Mathematics Magazine, Vol. 83, No.4 (2010), p. 304.
- Index entries for linear recurrences with constant coefficients, signature (8,40,-60,-40,8,1).
Programs
-
Mathematica
a[n_] := Fibonacci[n]^2 * Fibonacci[n+1]^3; Array[a, 21, 0] (* Amiram Eldar, Jun 06 2023 *)
Formula
G.f.: x*(1+4*x^2+x^3) / ((1-x-x^2)*(1-11*x-x^2)*(1+4*x-x^2)).
Comments